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Comparison of Detection Limit calculations 
 
This overview of the calculation of the lower limit of detection (and the more useful limit of 

determination) is intended for use with the results of wavelength-dispersive spectroscopy on an 

electron microprobe. It consists of five sections: Definitions, Expressions, Discussion, Examples, 

and References. 

 
 
Definitions: 
 
Item    Unit   Symbol  Equivalence    
 
Background counts  counts   NB  RB * TB 
 
Standard deviation of bkgd counts   √NB 
 
Peak counts   counts   NP  RP * TP 
 
Standard deviation of peak counts   √NP 
 
net Peak counts   counts   NnP  NP – NB = (RP * TP) – (RB * TB) 
 
 
 
Time on background  seconds   TB  NB/RB  
 
Time on peak    seconds   TP  NP/RP ≈ TB at limit of detection 
 
 
 
Rate of background intensity counts per  RB  NB/TB 
    second (cps) 
 
Rate of peak intensity  cps   RP  NP/TP 
 
Rate of net peak intensity cps   RnP  RP – RB for equal count times 
 
 
 
Concentration in standard wt% or ppm  Cstd   
 
Counts per second per  cps/% or cps/ppm m  RP – RB   also:  1  = _Cstd___    
unit of concentration           Cstd  m     RP – RB 
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that quantitative analysis is not possible at the concentration represented by the lower limit of 

detection” (Potts 1992). According to Potts (1992), a more useful criterion is the Limit of 

Determination, a concentration equivalent to six standard deviations of the background above the 

mean background counts, or twice the lower limit of detection as defined here.  

 

Note that some authors will adopt different definitions of the Limit of Determination (e.g., three 

times the lower limit of detection – Jenkins 1976). 

 

Example 1 
 
Standard data – output from JEOL software on JXA-8900 Superprobe for an obsidian analytical session.     

Measurement Condition, Measurement Order, Standard Data and Standard Intensity shown. 

Operating conditions: 15 kV, 10 nA, 10 μm beam. 

Measurement Condition  
WDS elements  

Element X-ray Crystal CH Acc.v Peak Pos. (Angstrom) BG_L BG_U (mm) 
1 K Ka PET (1) 15 121.345 3.7414 2.5 2.5 
2 Na Ka TAP (2) 15 129.599 11.9101 0 3 
3 Ca Ka PETH (3) 15 107.871 3.35839 2 2 
4 Si Ka TAPJ (4) 15 78.086 7.12542 0 3 
5 Fe Ka LIFH (5) 15 132.832 1.93604 4 4 
6 Ti Ka PET (1) 15 89.444 2.74851 2 2 
7 Mg Ka TAP (2) 15 107.671 9.89 0 3 
8 P Ka PETH (3) 15 197.79 6.157 4 2 
9 Al Ka TAPJ (4) 15 91.209 8.33934 0 2 
10 Mn Ka LIFH (5) 15 144.254 2.10182 0 1.5 

 
  TP TB         

Element Peak Back Pksk Gain High.V Base.L Window.W Mode
1 K 20 10 (sec) 2 64 1710 1 6.6 (V) Dif 
2 Na 20 10 (sec) 2 64 1706 1 8 (V) Dif 
3 Ca 20 10 (sec) 0 16 1700 2 7 (V) Dif 
4 Si 20 10 (sec) 0 64 1660 1 7 (V) Dif 
5 Fe 20 10 (sec) 2 32 1760 1.5 6.2 (V) Dif 
6 Ti 20 10 (sec) 2 64 1674 0.5 7 (V) Dif 
7 Mg 20 10 (sec) 0 64 1696 0.8 9 (V) Dif 
8 P 20 10 (sec) 2 32 1690 0.8 6.9 (V) Dif 
9 Al 20 10 (sec) 0 64 1664 1 7 (V) Dif 
10 Mn 20 10 (sec) 2 32 1750 0.8 7 (V) Dif 
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Measurement Order of WDS  
Order     Channel 1        2             3              4               5           
  1               K*3         Na*1        Ca*7        Si*1        Fe*2         
  2               Ti*1        Mg*1        P*5         Al*2        Mn*1         
 
Standard Data 

   Cstd 
Oxide Standard Wt.(%) 

1 K2O sanidine 12.11 
2 Na2O albite 11.59 
3 CaO hawaii-basalt 9.3 
4 SiO2 obsidian 73.93 
5 FeO hematite 89.7113
6 TiO2 rutile 100 
7 MgO hawaii-basalt 5.08 
8 P2O5 apatite 40.87 
9 Al2O3 obsidian 13.12 

10 MnO rhodonite 36.85 
 
Standard Intensity of WDS  
   RnP RB1 RB2      

Element Curr.(A) Net(cps) Bg-(cps) Bg+(cps) S.D.(%) Date
1 K 1.00E-08 616.9 4.8 4.1 0.52 Aug 6 18:11 2013
2 Na 1.01E-08 371.1 0 2.2 0.52 Aug 6 15:57 2013
3 Ca 1.02E-08 1143.6 21.9 20.3 0.34 Aug 7 8:22 2013
4 Si 1.01E-08 6317 0 13.4 0.14 Aug 6 15:49 2013
5 Fe 1.01E-08 4659.4 24.6 21.8 0.15 Aug 6 15:24 2013
6 Ti 1.01E-08 4371.5 21 17.7 0.15 Aug 6 16:06 2013
7 Mg 1.02E-08 267 0 3.6 0.69 Aug 7 8:22 2013
8 P 1.00E-08 898.5 3.5 5.6 0.38 Aug 6 18:02 2013
9 Al 1.01E-08 1217.4 0 8.9 0.32 Aug 6 15:49 2013

10 Mn 1.03E-08 1697.3 0 20.9 0.17 Aug 2 13:39 2013
 
 
Calculation of Lower Limit of Detection: 
 
Our standard practice is to measure a background on either side of the peak, with each 

background measured for half as long as the peak measurement. The total time spent counting 

background is therefore the same as for the peak: TB = TP. 

 

In the case of “one-sided backgrounds”, twice the rate of the background that is greater than zero 

has been adopted here for convenience. From the formulas tabulated above and using the usual 

JEOL output, a convenient approximation for the lower limit of detection is: 

LLD = 3√(RB * TB) * Cstd 

              (RnP * TP) 



December 11, 2013 

 

5 
 

It is often assumed that the backgrounds measured on the standards are directly comparable 

(equal) to those of the unknowns. The lower limits of detection can thus be calculated from the 

data for the standards: 

 

Obsidian RnP RB1 RB2 TP TB Cstd LLD 

Element Net(cps) Bg-(cps) Bg+(cps) Peak Back Oxide Wt.(%) Wt.(%)

1 K 616.9 4.8 4.1 20 10 K2O 12.11 0.03 
2 Na 371.1 0 2.2 20 10 Na2O 11.59 0.03 
3 Ca 1143.6 21.9 20.3 20 10 CaO 9.3 0.03 
4 Si 6317 0 13.4 20 10 SiO2 73.93 0.03 
5 Fe 4659.4 24.6 21.8 20 10 FeO 89.711 0.06 
6 Ti 4371.5 21 17.7 20 10 TiO2 100 0.07 
7 Mg 267 0 3.6 20 10 MgO 5.08 0.02 
8 P 898.5 3.5 5.6 20 10 P2O5 40.87 0.07 
9 Al 1217.4 0 8.9 20 10 Al2O3 13.12 0.02 
10 Mn 1697.3 0 20.9 20 10 MnO 36.85 0.07 

 
Example 2 

Standard data – output from JEOL software on JXA-8900 Superprobe for an olivine analytical session. 

Operating conditions: 20 kV, 20 nA, 2 μm beam.        

 

Olivine RnP RB1 RB2 TP TB Cstd LLD 

Element Net(cps) Bg-(cps) Bg+(cps) Peak Back Oxide Wt.(%) Wt.(%) 
1 Cr 16735.2 107.3 90.2 60 30 Cr2O3 100 0.02 
2 Mg 5977 0 10.4 60 30 MgO 51.63 0.01 
3 Ca 11797.3 76.8 70.6 60 30 CaO 25.74 0.01 
4 Si 6499.4 0 20.3 60 30 SiO2 40.85 0.01 
5 Mn 7432.5 0 69.9 40 20 MnO 36.85 0.02 
6 Ti 15819 59.6 56.8 60 30 TiO2 100 0.02 
7 Al 3744 23.2 16.7 60 30 Al2O3 22.51 0.01 
8 P 2790.6 11.9 16.1 60 30 P2O5 40.87 0.02 
9 Fe 15637.1 74.5 65.4 40 20 FeO 66.94 0.02 
10 Ni 35255.4 308.6 391 40 20 NiO 127.2526 0.03 

 
Calculation of Limit of Determination: 

The limit of determination is “the smallest signal which can be quantitatively measured (as 

opposed to qualitatively recognized) above background… The ideal error in measurements at this 

signal level is 16.7% relative (one sigma). The limit of determination represents the threshold 

below which measurements become increasingly qualitative.” (Potts 1992). The limit of 

determination (the six-sigma limit) is twice the magnitude of the lower limit of detection. 
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