EAS270, "The Atmosphere" <u>Mid-term Exam</u> 27 Oct,2004

<u>Professor</u>: J.D. Wilson <u>Time available</u>: 50 mins <u>Value</u>: 30%

Instructions: For all 45 multi-choice questions (each worth $\frac{2}{3}$ %), choose what you consider to be the best (or most logical) option. Use a pencil to mark that choice on the answer form. **Equations and data given at back**.

1. Atmospheric ozone (O₃) concentration is normally highest _____ where concentration is _____

- (a) near sea-level; up to about 1 ppm
- (b) near sea-level; up to about 15 ppm
- (c) above 100 km; up to about 1 ppm
- (d) about 25 km; up to about 15 ppm $\checkmark \checkmark$
- (e) about 25 km; less than 1 ppm
- 2. The chloroflourocarbon (CFC) gases whose emission was banned by the Montreal Protocol have an atmospheric residence time of about _____
 - (a) 1 year
 - (b) 10 years
 - (c) 100 years $\checkmark \checkmark$
 - (d) 1000 years
 - (e) 10000 years
- 3. Plants exert a key role in the hydrologic cycle and in the surface energy balance, because they are able to control the rate of ______ of water through stomata (pores) on their leaves. Through these same pores they ______ carbon dioxide to/from the daytime atmosphere, thus also playing a key role in the greenhouse gas climate mechanism.
 - (a) photosynthesis; transpire
 - (b) diffusion; absorb $\checkmark \checkmark$
 - (c) transpiration; release
 - (d) convection; absorb
 - (e) diffusion; release
- 4. Although a minor constituent of the atmosphere in terms of their contribution to mass, aerosols are important because _____
 - (a) they are an important plant nutrient taken up through the stomata
 - (b) as cloud condensation nuclei they play a vital role in cloud formation
 - (c) depending on their size, they may reduce incoming solar radiation and/or outgoing (longwave) radiation
 - (d) they impact on air quality (eg. visibility)
 - (e) (b,c,d) are all true $\checkmark \checkmark$

- 5. Solar elevation above the horizon in Edmonton (latitude 53.5 degrees), at solar noon on the day of the winter solstice, is _____ degrees, and the subsolar point travels along the _____
 - (a) 60; tropic of Cancer
 - (b) 45; equator
 - (c) 23.5; equator
 - (d) 13; tropic of Capricorn $\checkmark \checkmark$
 - (e) none of the above angles; equator
- 6. The principal factors causing the latitude-dependence of clear-sky, 24-hour total solar insolation measured at a horizontal surface near ground $(K \downarrow)$ are _____
 - (a) period of daylight, beam spreading, surface albedo
 - (b) period of daylight, beam spreading, beam depletion $\checkmark \checkmark$
 - (c) period of daylight, fractional surface ice-coverage, surface albedo
 - (d) beam depletion, surface albedo, surface emissivity
 - (e) surface albedo, surface emissivity, relative humidity
- 7. Let R be the radius of the earth. Earth's shadow cast by sunlight would cover an area of _____ while the surface area of the earth radiating longwave radiation is _____
 - (a) $4/3\pi R^3; \pi(2R)^2$
 - (b) $\pi R^2; 4\pi R^2 \quad \checkmark \checkmark$
 - (c) $4\pi R^2; \pi R^2$
 - (d) $\pi (R/2)^2; 4/3\pi R^3$
 - (e) $\pi R^3; \pi R^3$
- 8. The "atmospheric window" covers a wavelength range of about _____ μ m and occurs due to the _____ absorptivity in that waveband of H₂O, CO₂
 - (a) 0.4 4 low
 - (b) 0.4 4 high
 - (c) 8 11 low $\checkmark \checkmark$
 - (d) 8 11 high
 - (e) 4 100 low
- 9. Suppose a certain bare, dry soil has emissivity $\epsilon = 0.92$ and its surface temperature is 30 C. It emits longwave radiation energy at a rate $L \uparrow = ___$ W m⁻² and the spectrum of that emitted radiation peaks at $\lambda_{max} = ___$ μ m
 - (a) 0.04; 97
 - (b) 441; 9.6 ✓✓
 - (c) 0.04; 9.6
 - (d) 441; 97
 - (e) Given information is insufficient to permit calculation of these numbers

- 10. Consider the surface energy balance over a flat, bare, dry field (you may neglect the storage term). Suppose the net radiation $Q^* = 450 \ [W \ m^{-2}]$, that soil heat flux $Q_G = 50 \ [W \ m^{-2}]$, and that the Bowen Ratio B = 1. Then the sensible heat flux $Q_H = _$ W m⁻² and the atmosphere is said to be $_$ stratified.
 - (a) 200; topographically
 - (b) 200; stably
 - (c) 200; unstably $\checkmark \checkmark$
 - (d) 400; unstably
 - (e) 400; stably
- 11. In an inversion layer of the atmosphere, vertical motion is _____ and the direction of sensible heat transfer is _____ the ground.
 - (a) Enhanced; towards
 - (b) Suppressed; towards $\checkmark \checkmark$
 - (c) Enhanced; away from
 - (d) Suppressed; away from
 - (e) None of the above
- 12. The "diurnal" (daily) range in near-ground temperature (height 1.5 m) tends to be larger during ______ conditions.
 - (a) cloudy, windy
 - (b) cloudy, calm
 - (c) clear, calm $\checkmark \checkmark$
 - (d) clear, windy
 - (e) winter-time
- 13. Local conditions associated with a radiation fog are a strongly _____ temperature profile with a convective flow of heat _____ the atmosphere _____ the ground surface.
 - (a) adiabatic; to; from
 - (b) positive; through; at
 - (c) negative; through; at
 - (d) stable; to; from
 - (e) stable; from; to $\checkmark \checkmark$
- 14. A deep layer of fog is more likely to form on a night with a very gentle wind, than during a night which is completely calm, because ______ .
 - (a) longwave emission rate $L \uparrow$ is increased by wind
 - (b) eddies carry heat down to the cooling surface from a deeper layer $\checkmark \checkmark$
 - (c) a light wind increases the rate of cooling of the ground
 - (d) the ELR equals the DALR
 - (e) none of the above

- 15. At what time of day is the relative humidity (RH) normally at a minimum?
 - (a) just before sunrise
 - (b) when the air temperature is highest $\checkmark \checkmark$
 - (c) about midnight
 - (d) when air temperature is lowest
 - (e) during the nocturnal inversion
- 16. A forecaster may take the present dewpoint T_{d0} as an approximate value for his prediction of the overnight low temperature, assuming that as temperature T falls towards T_{d0} ultimately the formation of fog will prevent temperatures falling much below T_{d0} . This could be a poor forecast if ______.
 - (a) strong winds develop
 - (b) the spread $T T_d$ is very large
 - (c) the sky is overcast with heavy cloud
 - (d) strong temperature advection occurs
 - (e) all of the above $\checkmark \checkmark$
- 17. Consider three adjacent depth-layers (1,2,3) of the Planetary Boundary Layer. Mean horizontal windspeeds in the three layers are $U_1 < U_2 < U_3$. Layer 3 is therefore the ______ of the three layers. Parcels of air descending from layer 3 to layer 2 exert an influence that could (if not opposed) cause layer 2 to ______. This is called ______.
 - (a) lowest; accelerate; turbulent momentum transfer
 - (b) lowest; accelerate; viscous drag
 - (c) highest; decelerate; forcing
 - (d) highest; accelerate; turbulent momentum transfer $\checkmark \checkmark$
 - (e) highest; accelerate; viscous momentum transfer
- 18. We expect the wind near ground to diminish overnight because _____
 - (a) Stable temperature stratification (inversion) suppresses vertical exchange of air parcels, thus decoupling the surface air from the driving winds aloft $\sqrt{\checkmark}$
 - (b) Unstable temperature stratification suppresses vertical exchange of air parcels, thus decoupling the surface air from the driving winds aloft
 - (c) Stable temperature stratification (inversion) enhances vertical exchange of air parcels, thus decoupling the surface air to the driving winds aloft
 - (d) Unstable temperature stratification enhances vertical exchange of air parcels, thus decoupling the surface air to the driving winds aloft
 - (e) The air is loaded with dew, thus heavier, and so it slows down
- 19. If a sample of air is saturated at 20 C its absolute humidity (same as the vapour density, usual symbol ρ_v) is ______.
 - (a) 2337 Pa
 - (b) $1.7 \ge 10^{-2} \text{ kg m}^{-3} \quad \checkmark \checkmark$
 - (c) 0.0172 g kg^{-1}
 - (d) 1.7%
 - (e) none of the above

- 20. A parcel of air has temperature T = 10 C and vapor pressure e = 7.05 mb. Its dewpoint is about _____ %.
 - (a) 10; 100
 - (b) 2; 57 ✓✓
 - (c) 10.01; 70
 - (d) 12.27; 50
 - (e) undeterminable from the given data
- 21. The 'wet-bulb temperature' (T_w)
 - (a) equals the dewpoint (T_d)
 - (b) permits to calculate the relative humidity as $RH = 100 T_w$
 - (c) permits to calculate the relative humidity as $RH = 100 \ e/e_s(T_w)$
 - (d) is measured by a wet thermometer whose equilibrium temperature (T_w) is the result of a balance between evaporative cooling and input of sensible heat from the warmer air flowing over it $\sqrt{\checkmark}$
 - (e) none of the above
- 22. If a parcel of dry air had a temperature of 20 C when at height z = 0, then if it was lifted adiabatically to z = 700 m and then sank back down adiabatically to z = 500 m, its temperature would be _____ .
 - (a) 15 C √√
 - (b) 20 C
 - (c) 25 C
 - (d) 27 C
 - (e) 29 C
- 23. A parcel of dry air ascending 1000 m adiabatically in the atmosphere cools by _____ degrees Celcius. However due to _____, the cooling experienced by a saturated parcel covering the same path is _____ than this amount.
 - (a) one; entrainment of colder environmental air; more
 - (b) one; entrainment of warmer environmental air; less
 - (c) one; release of latent heat of condensation; less
 - (d) ten; release of latent heat of condensation; more
 - (e) ten; release of latent heat of condensation; less $\checkmark \checkmark$
- 24. The environmental lapse rate (ELR) in a ground-based layer during exceptionally windy and dry conditions will be ______ .
 - (a) Approximately the same as the dry adiabatic lapse rate (DALR) $\checkmark \checkmark$
 - (b) Approximately the same as the moist adiabatic lapse rate (SALR)
 - (c) Zero, ie. the layer will be isothermal
 - (d) That of a very strong inversion (temperature increasing with increasing height)
 - (e) Strongly unstable, the temperature decreasing with increasing height at a rate far exceeding the dry adiabatic lapse rate

- 25. Consider the magnitude of the atmospheric pressure decrease ΔP between sea-level (z = 0), and a point overhead at a height of 1 kilometre above sea-level (z = 1000 m). In the northern hemisphere winter, ΔP is _____ .
 - (a) larger at the north pole than at the equator $\sqrt{\checkmark}$
 - (b) smaller at the north pole than at the equator
 - (c) the same at the north pole as at the equator
 - (d) negative
 - (e) zero
- 26. In a "hydrostatic" weather model, the gravitational and vertical pressure-gradient forces acting on any air parcel are assumed to balance. As a result, according to such a model, _____ .
 - (a) the parcel's vertical velocity W = 0
 - (b) the parcel's vertical velocity W < 0
 - (c) the parcel's acceleration $\Delta W/\Delta t = 0$ $\checkmark \checkmark$
 - (d) the wind is Geostrophic
 - (e) the wind is subGeostrophic
- 27. To roughly estimate effective sea-level pressure from a reading P [mb] made 1000 m above sea-level, one should best ______ .
 - (a) Add 10 mb
 - (b) Subtract 10 mb
 - (c) Add 100 mb $\checkmark\checkmark$
 - (d) Subtract 100 mb
 - (e) Add 1000 mb
- 28. Calculate the Geostrophic windspeed at a point at latitude 50°N, if the height-contours (drawn at intervals $\Delta h = 6$ dam) are spaced at separations $\Delta x = 200$ kilometers.
 - (a) 0.27 m s^{-1}
 - (b) 2.7 m s^{-1}
 - (c) 27 m s^{-1} $\checkmark \checkmark$
 - (d) 2.7 kph
 - (e) 27 kph
- 29. Friction near ground turns the wind across the isobars towards lower pressure. In the absence of topographic disturbance, the cross-isobar angle is normally about _____ degrees.
 - (a) 180
 - (b) 90
 - (c) 10-40, depending on surface roughness and other factors $\checkmark \checkmark$
 - (d) 0-1, depending on surface roughness and other factors
 - (e) < 1

- 30. At 45° latitude the Coriolis timescale (= 1/f) has numerical value ____ [s]. Now consider a fluid motion on earth whose lifetime $\tau \sim 1 100$ [s]: does the Coriolis force play a role in the dynamics of this phenomenon?
 - (a) 1.03×10^{-4} ; yes
 - (b) 1.03×10^{-4} ; no
 - (c) 9.7×10^3 ; yes
 - (d) 9.7×10^3 ; no $\checkmark \checkmark$
 - (e) 0.707; yes
- 31. The vapour pressure surrounding a droplet of pure water of radius $R \ll 1\mu m$ and temperature T ______ the benchmark $e_s(T)$ due to the ______ effect.
 - (a) is less than; curvature
 - (b) is less than; solute
 - (c) exceeds; curvature $\checkmark \checkmark$
 - (d) exceeds; solute
 - (e) equals; negligible curvature

For the remaining questions, please refer to the attached charts, valid $12Z \ 21 \ \text{Sep}/04$.

- 32. Sea-level corrected pressure on the isobar that has been labelled \mathbf{A} must be _____ mb
 - (a) 859
 - (b) 921
 - (c) 988
 - (d) 992 \[\sqrt \lambda \]
 - (e) 1012

33. The wind at the point labeled \mathbf{A} would likely have been a/an

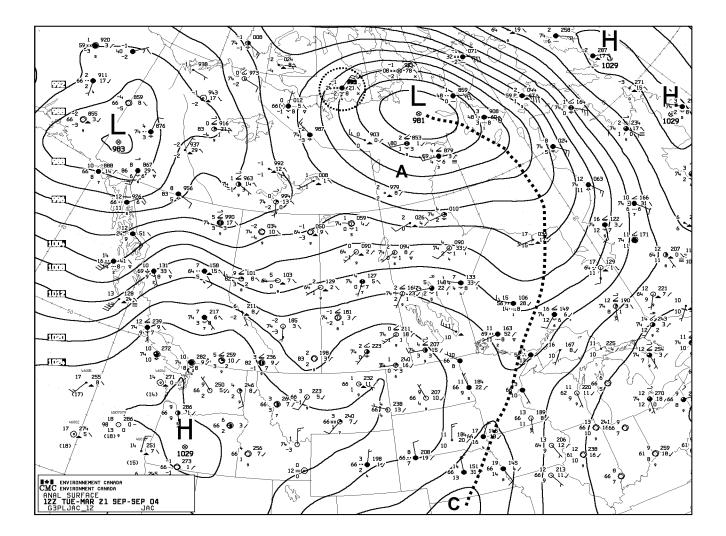
- (a) northerly
- (b) southerly
- (c) south-easterly
- (d) easterly
- (e) westerly $\checkmark \checkmark$
- 34. Two stations on the BC coastal region reported their present weather as steady rain. One of these stations reported a wind that appears anomalous. The reported pressure at that station was _____ [mb] and the 'abnormal' wind observation is probably a _____ effect
 - (a) 992.6; oceanic
 - (b) 926; oceanic
 - (c) 992.6; topographic $\checkmark \checkmark$
 - (d) 926; topographic
 - (e) 1004.1; island

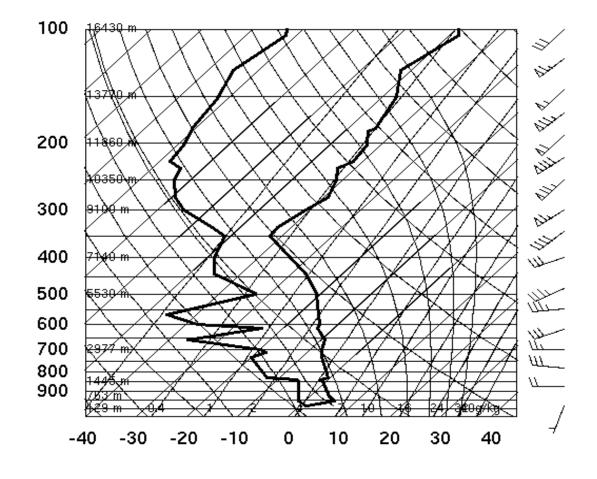
35. The dashed line that has been added (by the instructor) to the surface analysis represents a/an _____

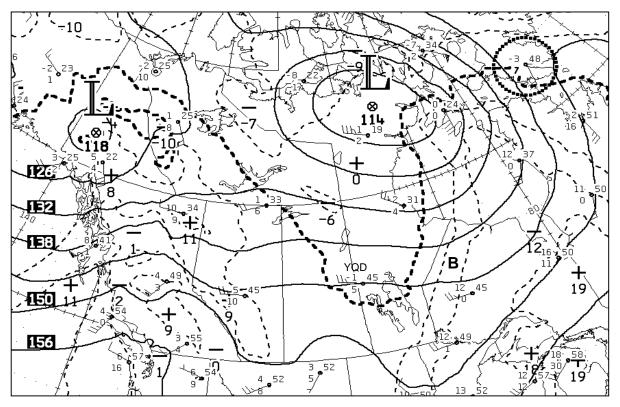
- (a) ridge of low surface pressure
- (b) ridge of high surface pressure
- (c) trough of low surface pressure $\checkmark \checkmark$
- (d) trough of high surface pressure
- (e) probable track for future motion of the weather system in NE Canada

36. The pressure system defined by the isobars in the region of \mathbf{C} is a

- (a) High or trough
- (b) Low or ridge
- (c) High or ridge
- (d) Low or trough $\checkmark \checkmark$
- (e) Unable to determine from given data
- 37. Temperature-dewpoint spread at the station in extreme SE Alberta was _____ C. A feature of the station report that is *consistent* with the reported $T T_d$ is _____ .
 - (a) 2; clear skies
 - (b) 2; intermittent drizzle (past weather)
 - (c) 0; clear skies
 - (d) 0; intermittent drizzle (past weather) $\checkmark \checkmark$
 - (e) 4; clear skies


38. At Edmonton (apprx. 700 m above sea-level) the 850 mb surface lay _____ kilometers above ground


- (a) $\frac{1}{4}$
- (b) $\frac{1}{2}$
- (c) $\frac{2}{3}$
- (d) $\frac{3}{4} \checkmark \checkmark$
- (e) $\frac{3}{2}$
- 39. Comparing the reported Stony Plain 850 mb wind direction with the nearby height contour, one could justifiably suggest
 - (a) the reported wind direction is anomalous
 - (b) the reported windspeed, about 10 m s^{-1} , is implausible
 - (c) the concept of Geostrophic flow does not apply here
 - (d) at this time the 850 mb surface lay above the friction layer \checkmark
 - (e) at this time the 850 mb surface lay within the friction layer
- 40. Referring to the 850 mb analysis, in central Saskatchewan temperature advection is _____ while at the location **B** (east of the Manitoba-Ontario border) strong _____ temperature advection is occurring
 - (a) weak or non-existent; warm
 - (b) weak or non-existent; cold $\checkmark \checkmark$
 - (c) dominating weather evolution; warm
 - (d) dominating weather evolution; cold
 - (e) seasonal; unseasonal


- 41. Looking at both the surface and 850 mb analyses, surface air in far N. Manitoba is generally _____ than in far N. Alberta, while the opposite is true of the 850 mb temperature. We may conclude the lower atmosphere over N. Manitoba is _____ stable than over N. Alberta
 - (a) warmer; more
 - (b) warmer; less $\checkmark \checkmark$
 - (c) colder; more
 - (d) colder; less
 - (e) more anticyclonic; much more
- 42. The skew T log P diagram (courtesy U. Wyoming) is for station YQD (The Pas), located in westcentral Manitoba near the Saskatchewan-Manitoba border, and identifiable on both the surface and 850 mb analyses. The sounding and the charts are _____ as regards surface properties and _____ as regards 850 mb level properties
 - (a) inconsistent; consistent
 - (b) consistent; inconsistent
 - (c) consistent; consistent $\checkmark \checkmark$
 - (d) inconsistent; inconsistent
 - (e) none of the above
- 43. On the YQD sounding we see quite dry air. A significant ground-based feature is _____ while the 400-350 mb layer can be said to _____
 - (a) a stable layer; be saturated
 - (b) the DALR; MALR
 - (c) the inversion; be well-mixed $\checkmark \checkmark$
 - (d) surface saturation; moist advection aloft
 - (e) both (c) and (d)
- 44. Cross-comparing the 850 chart and the skew-T diagram, the radiosonde must have crossed the 850 mb surface at a height of _____ m
 - (a) 129
 - (b) 450
 - (c) 763
 - (d) 1445 $\checkmark \checkmark$
 - (e) 2977

45. According to the skew-T diagram, at The Pas the tropopause lay at _____ mb.

- (a) 100
- (b) ≈ 130
- (c) 200
- (d) 350 √√
- (e) 850

Equations and Data (You may not need to use all given data!)

• $V = \frac{4}{3}\pi R^3, A = 4\pi R^2$

Volume (V) and surface area (A) of a sphere of radius R

• $\frac{\Delta P}{\Delta z} = -\rho g$

The hydrostatic law. ΔP [Pascals], the change in pressure as one ascends a distance Δz [m]; ρ [kg m⁻³] the density; $g \sim 10$ [m s⁻²] acceleration due to gravity.

• $P = \rho R T$

The ideal gas law. P [Pascals], pressure; ρ , $[kg \ m^{-3}]$ the density; T [Kelvin], the temperature; and R = 287 $[J \ kg^{-1} \ K^{-1}]$, the specific gas constant for air.

• $e = \rho_v R_v T$

The ideal gas law for water vapor. e [Pascals], pressure; ρ_v , $[kg \ m^{-3}]$ the absolute humidity (ie. vapor density); T [Kelvin], the temperature; and $R_v = 462$ [$J \ kg^{-1} \ K^{-1}$], the specific gas constant for water vapor.

• $L \uparrow = \epsilon \sigma T^4$

Stefan-Boltzmann law. $L \uparrow [W m^{-2}]$, the emitted longwave energy flux density; ϵ , the emissivity of the surface (dimensionless); $\sigma = 5.67 \times 10^{-8}$ [W m⁻² K⁻⁴], the Stefan-Boltzmann constant; T [K], the surface temperature.

• $\lambda_{max} = \frac{2900}{T}$

Wien's displacement law. λ_{max} [µm], the wavelength at which the peak in the emission spectrum occurs; T [K], the temperature of the emitting surface.

• $\theta = 90 - \Phi_{lat} + \phi_{sol.dec}$

The solar elevation θ at solar noon, at a location with latitude Φ_{lat} , at the time of year when solar declination is $\phi_{sol.dec}$. Latitude is negative in the southern hemisphere; and solar declination is negative during northern hemisphere winter.

 $\bullet \ Q^* = Q_H + Q_E + Q_G + Q_S$

The surface energy balance. All fluxes are in $[W m^{-2}]$. Q^* the net radiation, positive if directed towards the ground surface; Q_H, Q_E the sensible heat flux and the latent heat flux, positive if directed away from the ground surface; Q_G the soil heat flux, positive if directed away from the ground surface; Q_S , the storage term. The Bowen ratio $B = Q_H/Q_E$.

• $Q^* = K^* + L^* = K \downarrow -K \uparrow +L \downarrow -L \uparrow$

The surface radiation balance. All fluxes are in $[W \ m^{-2}]$. $K \downarrow, K \uparrow$, the incoming and outgoing solar fluxes (net solar, $K^* = K \downarrow -K \uparrow$); and $L \downarrow, L \uparrow$, the incoming and outgoing longwave fluxes (net longwave, $L^* = L \downarrow -L \uparrow$).

• $V = \frac{g}{f} \frac{\Delta h}{\Delta x}$

The Geostrophic wind equation. Δh [m], the change in height of a constant pressure surface over distance Δx [m] normal to the height contours; $f = 2\Omega \sin \phi$ [s^{-1}] the Coriolis parameter (where $\Omega = 2\pi/(24 \times 60 \times 60) = 7.27 \times 10^{-5} s^{-1}$ is the angular velocity of the earth, and ϕ is latitude); $g \sim 10 \ [m \ s^{-2}]$ acceleration due to gravity.

• Each full barb on the wind "dart" counts for about 5 m s^{-1}

T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$
0	6.11	5	8.72	10	12.27	15	17.04	20	23.37	25	31.67
1	6.57	6	9.35	11	13.12	16	18.17	21	24.86	26	33.61
2	7.05	7	10.01	12	14.02	17	19.37	22	26.43	27	35.65
3	7.58	8	10.72	13	14.97	18	20.63	23	28.09	28	37.80
4	8.13	9	11.47	14	15.98	19	21.96	24	29.83	29	40.06

Table 1: Saturation vapour pressure $e_s(T) \; [\mathrm{mb}]$ versus temperature $T \; [\mathrm{C}].$