EAS270, "The Atmosphere" <u>Mid-term Exam</u> 27 Oct, 2006

Professor: J.D. Wilson <u>Time available</u>: 50 mins <u>Value</u>: 20%

Instructions: For all 32 multi-choice questions, choose what you consider to be the best (or most logical) option. Use a pencil to mark that choice on the answer form. *Equations and data given at back*. *You may keep this exam*

- 1. Atmospheric pressure is of foremost interest in synoptic meteorology because _____
 - (a) it is directly related to mean annual temperature
 - (b) it controls humidity and thus cloud formation
 - (c) it obeys the hydrostatic law
 - (d) it signifies the total mass of air above a pressure-level of 1 mb
 - (e) on the synoptic scale it controls the horizontal and vertical winds $\checkmark \checkmark$
- 2. A dim, "watery" sun visible through a gray sheet-like cloud is often a good indication of ______ cloud.
 - (a) stratocumulus
 - (b) altostratus $\checkmark \checkmark$
 - (c) nimbostratus
 - (d) cirrostratus
 - (e) cumulonimbus
- 3. If cold air is warmed at constant pressure without addition or removal of water vapour, the saturation vapor pressure $e_s(T)$ associated with this air _____ while its relative humidity
 - (a) increases; increases
 - (b) decreases; decreases
 - (c) increases; decreases $\checkmark \checkmark$
 - (d) decreases; increases
 - (e) increases; remains unchanged

- 4. According to the "Geostrophic-wind" and "Gradient-wind" scientific models for the winds in the free atmosphere, the wind should blow _____ to pressure (or height) contours, with a speed that is _____ to the distance between the contours.
 - (a) parallel; inversely proportional $\checkmark \checkmark$
 - (b) parallel; proportional
 - (c) perpendicular; inversely proportional
 - (d) perpendicular; proportional
 - (e) adjacent; indifferent
- 5. When averaged over a large area (eg. over all of Saskatchewan) at a specific time, the vertical velocity in the free atmosphere is usually _____
 - (a) zero
 - (b) large and upward
 - (c) super-geostrophic
 - (d) non-zero, but much smaller than the horizontal velocity $\checkmark\checkmark$
 - (e) of a magnitude comparable with the horizontal velocity
- 6. About _____ of the mass of the atmosphere lies below the 500 mb surface, whose distance above sea-level is about _____
 - (a) 70%; 3 km
 - (b) 50%; 5 km $\checkmark \checkmark$
 - (c) 50%; 50 km
 - (d) 33%; 1 km
 - (e) 25%; 50 dam
- 7. If atmospheric density is 1 kg m⁻³, then the point of observation must be closest to _____
 - (a) 1 mb
 - (b) 10 mb
 - (c) 100 mb
 - (d) 1000 mb $\checkmark \checkmark$
 - (e) 1000 kPa

- 8. As a frost protection strategy for a valuable crop the effectiveness of _____ depends on the existence of particular and conducive ('helpfully contributing') meteorological conditions, specifically the presence of
 - (a) wind machines; a ground-based inversion $\checkmark \checkmark$
 - (b) wind machines; an absolutely unstable ground-based layer
 - (c) smudge pots; a strong wind
 - (d) smudge pots; a layer of nimbostratus
 - (e) water droplet sprayers; a ground-based layer in which relative humidity is 100%
- 9. All terms in the surface energy balance equation are _____
 - (a) conductive fluxes
 - (b) energy fluxes along the direction of the wind
 - (c) energy fluxes along the vertical direction $\checkmark \checkmark$
 - (d) convective fluxes
 - (e) radiative fluxes
- 10. Consider the alternatives of quantifying the terms in the surface energy balance over periods of 1 or 24 hours (notation: $Q_H^{(1)}, Q_H^{(24)}$, etc., where symbols denote average *rates* of energy transport over the specified interval). Assume the energy balance under discussion is that over a bare soil during a cloudless period in summer. Which of the following statements is *false*?
 - (a) the balance $Q^{*(-)} = Q_H^{(-)} + Q_E^{(-)} + Q_G^{(-)}$ is expected to apply in both cases
 - (b) $Q_G^{(24)}$ is likely to be smaller in magnitude than the near noon values of $Q_G^{(1)}$
 - (c) $Q_{H}^{(24)}$ is likely to be smaller in magnitude than the near noon values of $Q_{H}^{(1)}$
 - (d) $Q_E^{(1)}$ must always exceed $Q_H^{(1)}$ in magnitude $\checkmark \checkmark$
 - (e) the "evaporative flux" $E^{(1)} = Q_E^{(1)}/L$ can be negative (L is the latent heat of vapourization)
- 11. The dewpoint of air whose vapour pressure is 12 mb is about _____ Celcius
 - (a) 0
 - (b) 5
 - (c) 10 ✓√
 - (d) 15
 - (e) 20

- 12. Due to the ______ effect, the environmental vapour pressure required to assure the equilibrium of a droplet of pure water of temperature T and radius $R \ll 1\mu m$ ______ the benchmark $e_s(T)$.
 - (a) solute; is less than
 - (b) solute; exceeds
 - (c) Bergeron; equals
 - (d) curvature; is less than
 - (e) curvature; exceeds $\checkmark \checkmark$
- 13. Suppose in a certain layer of the atmosphere the environmental lapse rate (ELR) is $+0.05^{\circ}$ C m⁻¹, ie. for every 1 m increase in altitude, the temperature increases by 0.05°C. This layer is _____
 - (a) unconditionally unstable
 - (b) conditionally unstable
 - (c) conditionally stable
 - (d) unconditionally stable $\checkmark \checkmark$
 - (e) adiabatic
- 14. A halo around the sun or moon is associated with _____
 - (a) nimbostratus
 - (b) stratocumulus
 - (c) altocumulus
 - (d) cirrostratus $\checkmark \checkmark$
 - (e) altostratus
- 15. The Bergeron process for migration of water from supercooled droplets to ice crystals depends on the difference in _____ between surfaces of ice and water
 - (a) temperature
 - (b) equilibrium vapor pressure $\checkmark \checkmark$
 - (c) density
 - (d) terminal velocity
 - (e) vertical velocity

- 16. The ocean surface temperature in the eastern equatorial Pacific is markedly above normal (positive temperature anomaly) during _____
 - (a) an Ekman spiral
 - (b) a southern oscillation
 - (c) a Ferrel cell
 - (d) a La Nina
 - (e) an El Nino $\checkmark \checkmark$
- 17. At mid-latitudes the predominant winds aloft are _____
 - (a) westerly in both hemispheres $\checkmark \checkmark$
 - (b) easterly in both hemispheres
 - (c) meridional in both hemispheres
 - (d) meridional in the northern hemisphere, zonal in the southern
 - (e) zonal in the northern hemisphere, meridional in the southern
- 18. Which association is *incorrect*?
 - (a) atmospheric window satellite cloud imagery
 - (b) Rossby wave mesoscale phenomenon $\checkmark \checkmark$
 - (c) overrunning airmass boundary
 - (d) lee trough Chinook wind
 - (e) southern oscillation El Nino
- 19. Which of the following air properties would normally increase as you travelled upward through the summer, daytime Planetary Boundary Layer (Friction Layer)?
 - (a) air density
 - (b) air pressure
 - (c) air temperature
 - (d) wind speed $\checkmark \checkmark$
 - (e) humidity
- 20. On a skew T log p diagram, these two families of curves run parallel to each other high in the atmosphere:
 - (a) isotherms & isobars
 - (b) isobars & dry adiabats
 - (c) isobars & moist adiabats
 - (d) isotherms & dry adiabats
 - (e) dry adiabats & moist adiabats $\checkmark \checkmark$

21. The numerical value of earth's "solar constant" is about _____

- (a) 9.8 $[m s^{-2}]$
- (b) $0.5 \ [\mu m]$
- (c) 1370 $[W m^{-2}] \quad \checkmark \checkmark$
- (d) 4 $[\mu m]$
- (e) $500 \, [W \, m^2]$

22. In a pristine (ie. clean) atmosphere, the sky colour is attributable to _____

- (a) Mie scattering by air molecules
- (b) preferential absorption of red light
- (c) preferential absorption of blue light
- (d) preferential Rayleigh scattering of red light
- (e) preferential Rayleigh scattering of blue light $\checkmark \checkmark$

23. Electromagnetic radiation with wavelength (λ) between about 0.4 and 0.7 μ m is _____

- (a) ultraviolet light
- (b) in the atmospheric window
- (c) microwave radiation
- (d) in the "visible" waveband of the shortwave spectrum $\checkmark \checkmark$
- (e) in the near infra-red (NIR) waveband

24. The shortwave reflectivity (or albedo) is defined to be _____

- (a) $\frac{K\downarrow}{K\uparrow}$
- (b) $\frac{K\uparrow}{K\downarrow}$ $\checkmark \checkmark$
- (c) K^*
- (d) $K^* + L^*$
- (e) $\frac{K\uparrow}{L\downarrow}$
- 25. On a certain sunny summer afternoon the net radiation over a field of bare soil is $Q^* = 500 \text{ W m}^{-2}$, and the sensible and latent heat fluxes are $Q_H = 180$, $Q_E = 300 \text{ W m}^{-2}$. The soil heat flux Q_G is _____
 - (a) 980 W m^{-2}
 - (b) 480 W m^{-2}
 - (c) 120 W m^{-2}
 - (d) 20 W m⁻² $\checkmark \checkmark$
 - (e) -980 W m^{-2}

- 26. Collision efficiency for cloud droplets of radius r, R
 - (a) is near unity for $r \ll R$
 - (b) is near unity for $r \gg R$
 - (c) is near unity for $r \approx R$
 - (d) is a maximum in warm clouds
 - (e) is much smaller than unity for $r \ll R$ and $r \gg R$ $\checkmark \checkmark$

For the remaining questions, please refer to the attached charts.

- 27. Referring to Fig.(1), the isobar pattern in SW Alberta is a/an _____
 - (a) lee trough $\checkmark \checkmark$
 - (b) Rossby wave trough
 - (c) frontal trough
 - (d) continental Polar (cP) trough
 - (e) anticyclone
- 28. Dewpoint at the station nearest to the NW corner of Alberta was _____ and the pressure change in the past 3 hours was _____
 - (a) $9^{\circ}C$; 25 mb fall
 - (b) $6^{\circ}C$; 25 mb fall
 - (c) $3^{\circ}C$; 4.7 mb fall
 - (d) -3° C; 2.5 mb fall $\checkmark \checkmark$
 - (e) falling after an initial rise; 4.7 mb fall

29. Fig.(2) is an analysis at the _____ level. The heavy dashed line is _____

- (a) 250 mb; 100% relative humidity contour
- (b) 500 mb; 50% relative humidity contour
- (c) 700 mb; $T = T_d = 0^{\circ}$ C contour
- (d) 850 mb; $T = 0^{\circ}$ C isotherm (ie. freezing contour) $\checkmark \checkmark$
- (e) surface; freezing contour

30. On Fig.(2) the thermal feature in Alberta is called a _____

- (a) Rossby wave
- (b) longwave
- (c) trough of warm air aloft (or 'trowal') $\checkmark \checkmark$
- (d) dry adiabat
- (e) mid-latitude cyclone

- 31. The thermal feature on Fig.(2) in Alberta is caused by _____
 - (a) incursion into Alberta of an airstream from the SE bringing in martime tropical (mT) air from the SE United States
 - (b) strong solar heating in Alberta
 - (c) advection onto Alberta of the warm sector of the coastal cyclone
 - (d) the release of latent heat as clouds form at this level over Alberta
 - (e) adiabatic compression of air descending the eastern slopes of the Rockies $\checkmark \checkmark$
- 32. On Fig.(2) the black-shaded area defined by intersections of height contours and isotherms demarcates a region of _____
 - (a) the Polar front
 - (b) the Hadley cell
 - (c) cold advection
 - (d) warm advection $\checkmark \checkmark$
 - (e) freezing rain

Equations and Data

$$\bullet \ Q^* = Q_H + Q_E + Q_G$$

Energy balance on a reference plane at the base of the atmosphere ("surface energy balance")), all fluxes in $[W m^{-2}]$. Q^* the net radiation, positive if directed towards the surface; Q_H, Q_E the sensible and the latent heat fluxes, positive if directed from the surface towards the atmosphere; Q_G the 'soil' heat flux, positive if directed from the surface into ground/lake/ocean.

• $Q^* = K^* + L^* = K \downarrow -K \uparrow +L \downarrow -L \uparrow$

The radiation balance on a horizontal reference plane surface. All fluxes are in $[W m^{-2}]$. $K \downarrow, K \uparrow$, the incoming and outgoing solar fluxes (net solar, $K^* = K \downarrow -K \uparrow$); and $L \downarrow, L \uparrow$, the incoming and outgoing longwave fluxes (net longwave, $L^* = L \downarrow -L \uparrow$).

Table 1: Saturation vapour pressure $e_s(T)$ [mb] versus temperature T [C].

T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$
0	6.11	5	8.72	10	12.27	15	17.04	20	23.37	25	31.67
1	6.57	6	9.35	11	13.12	16	18.17	21	24.86	26	33.61
2	7.05	7	10.01	12	14.02	17	19.37	22	26.43	27	35.65
3	7.58	8	10.72	13	14.97	18	20.63	23	28.09	28	37.80
4	8.13	9	11.47	14	15.98	19	21.96	24	29.83	29	40.06

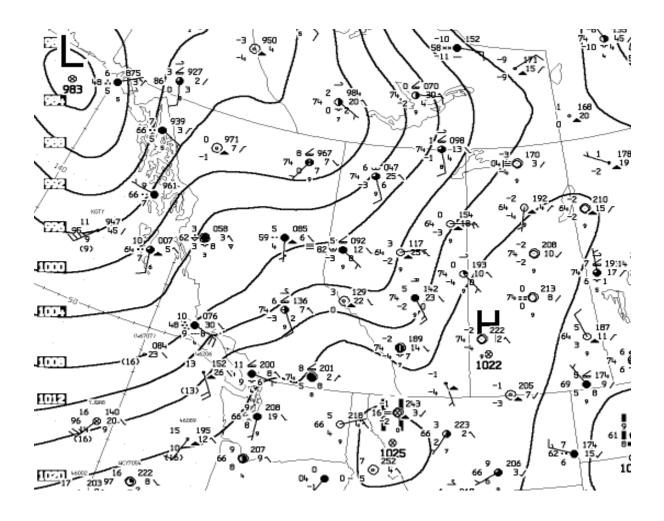


Figure 1: CMC surface analysis, 12Z 12 Oct 2005.

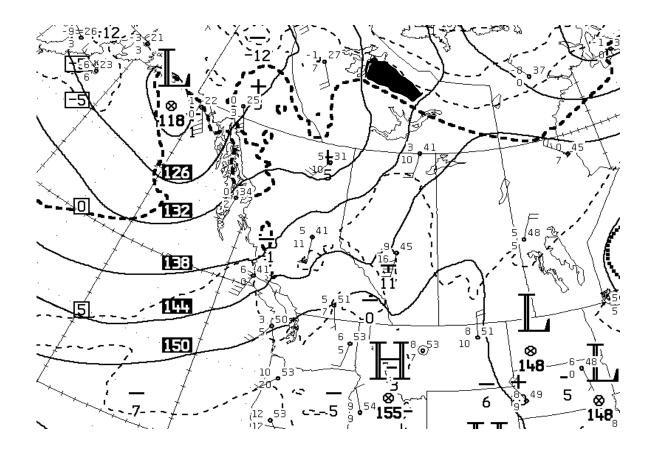


Figure 2: CMC analyses, 12Z 12 Oct 2005.