EAS270, "The Atmosphere" Quiz 1 26 Sep, 2005

Professor: J.D. Wilson <u>Time available: 25 mins</u> <u>Potential Value: 10%</u>

Instructions: For all 16 questions, choose what you consider to be the best (or most logical) option, and use a pencil to mark that choice on the answer form. **Eqns/data given at back**. You may keep this quiz.

- 1. The troposphere is the height-layer of the atmosphere that _____
 - (a) extends from ground or sea-level to the 1 mb level
 - (b) extends from 1000 mb 1 mb
 - (c) extends from 1mb 0 mb (ie. from 1mb out into empty space)
 - (d) extends from ground or sea-level to about 10 12 km altitude $\checkmark \checkmark$
 - (e) lies above the stratosphere

2. The proportions of nitrogen and oxygen in the atmosphere _____

- (a) are constant through the troposphere and stratosphere $\checkmark \checkmark$
- (b) vary randomly from 78% to 21% due to mixing
- (c) increase from 21% to 78% with increasing height
- (d) decrease from 78% to 21% with increasing height
- (e) drop discontinuously across the trop opause from 78% to 21%
- 3. Dimethyl sulphide (DMS) given off by decay of ocean biota
 - (a) reacts in air to produce aerosols that may absorb or scatter radiation $\checkmark \checkmark$
 - (b) is one of the permanent atmospheric gases
 - (c) is a variable greenhouse gas
 - (d) reacts in the sea to produce aerosols
 - (e) none of the above
- 4. The mass of air overlying 1 square metre of area on the 100 mb surface is _____
 - (a) 100 mb
 - (b) 10000 Pa
 - (c) 100 N m^{-2}
 - (d) 100 kg
 - (e) 1000 kg √√

- 5. Air density _____
 - (a) is inversely proportional to windspeed
 - (b) decreases rapidly with increasing height $\checkmark \checkmark$
 - (c) increases rapidly with increasing height
 - (d) is constant with height in the troposphere
 - (e) is constant with height in the troposphere and stratosphere
- 6. Suppose in Edmonton the pressure and temperature are $(p, T)=(935 \text{ mb}, 15 \text{ }^{\circ}\text{C})$. The air density ρ is _____
 - (a) 1 kg m^{-3}
 - (b) 1 mb
 - (c) $1.1 \text{ kg m}^{-3} \checkmark \checkmark$
 - (d) 112 Pa
 - (e) 1 Pa
- 7. This question is coupled with the previous question: Suppose in Edmonton the pressure and temperature are (p, T)=(935 mb, 15 °C). The 900 mb level is about _____ overhead (Hint: use the hydrostatic equation to compute the needed Δz)
 - (a) 300 m ✓✓
 - (b) 30 m
 - (c) 3 m
 - (d) 3000 m
 - (e) 3 km
- 8. Solar elevation above the horizon in Edmonton (latitude 53.5 degrees N), at solar noon on the day of the December (winter) solstice, is _____ degrees
 - (a) 13 √√
 - (b) 23.5
 - (c) 45
 - (d) 60
 - (e) none of the above

- 9. The spectrum of radiation from a certain black body has a spectral peak at wavelength $\lambda_{max} = 14 \,\mu\text{m}$. The temperature of the body must be about _____
 - (a) 207° C
 - (b) 67°C
 - (c) -67K
 - (d) 207K ✓√
 - (e) 480K
- 10. Suppose two (otherwise identical) surfaces are at temperatures T, 2T K. The hotter surface radiates energy at a rate (E) that is _____ times the rate of the cooler surface
 - (a) 1/2
 - (b) 2
 - (c) 1/4
 - (d) 4
 - (e) 16 $\checkmark \checkmark$
- 11. The numerical value of earth's "solar constant" is about _____
 - (a) $9.8 \, [\mathrm{m \ s^{-2}}]$
 - (b) $0.5 \ [\mu m]$
 - (c) $4 \, [\mu m]$
 - (d) $500 \, [W \, m^2]$
 - (e) 1370 [W m⁻²] $\checkmark \checkmark$

For the remaining questions, please refer to the attached surface analysis.

- 12. The given charts are valid at _____
 - (a) 1800 MDT
 - (b) 0600 MDT $\checkmark \checkmark$
 - (c) 0600 GMT
 - (d) 0600 UTC
 - (e) none of the above

- 13. The weather system in the Northwest Territories (NWT) just north of the Alberta-Saskatchewan border can be called a _____
 - (a) mid-latitude cyclone
 - (b) depression
 - (c) storm
 - (d) low
 - (e) any and all of the above $\checkmark \checkmark$
- 14. In central Saskatchewan the weather was
 - (a) frosty
 - (b) exceptionally windy
 - (c) pleasant
 - (d) overcast and rainy, with falling pressure $\checkmark \checkmark$
 - (e) not reported
- 15. At Red Deer (the station immediately east of the labelled High in SW Alberta) the sea-level corrected pressure was _____ and _____
 - (a) 922.4 mb; rising
 - (b) 1022.4 mb; rising $\checkmark \checkmark$
 - (c) 1022.4 Pa; rising
 - (d) 1224 Pa; falling
 - (e) 1224 mb; falling
- 16. The correct label for the isobar that cuts across the northern border of Alberta would be _____ mb
 - (a) 1020
 - (b) 1018
 - (c) 1016 ✓√
 - (d) 1014
 - (e) 1012

Equations and Data.

• $p = \frac{M g}{A}$

The pressure (p, Pa) that results when a mass M kg of air overlies area $A \text{ m}^2$, where $g = 10 \text{ m s}^{-2}$

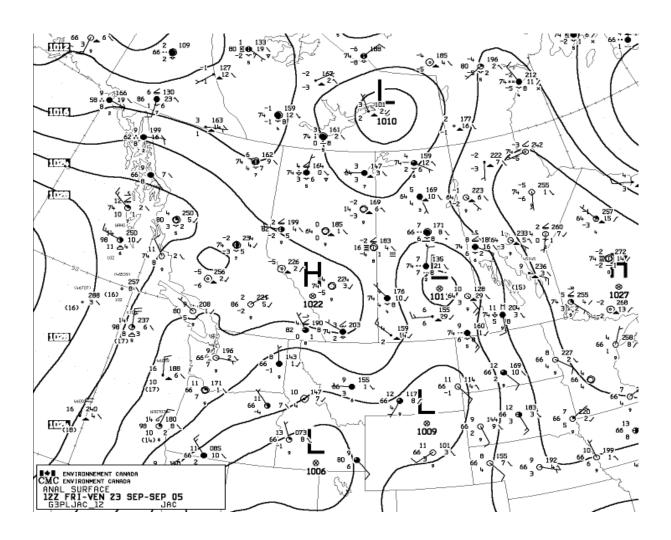
• $\frac{\Delta P}{\Delta z} = -\rho g$

The hydrostatic law. ΔP [Pascals], the change in pressure as one ascends a distance Δz [m]; ρ [kg m⁻³] the density; $g \sim 10$ [m s⁻²] acceleration due to gravity.

• $P = \rho R T$

The ideal gas law. P [Pascals], pressure; ρ , [kg m⁻³] the density; T [Kelvin], the temperature; and R = 287 [J kg⁻¹ K⁻¹], the specific gas constant for air).

• $E = \epsilon \sigma T^4$


Stefan-Boltzmann law. $L \uparrow [W m^{-2}]$, the emitted longwave energy flux density; ϵ , the emissivity of the surface (dimensionless, = 1 for a black body); $\sigma = 5.67 \times 10^{-8}$ [W m⁻² K⁻⁴], the Stefan-Boltzmann constant; T [K], the surface temperature.

• $\lambda_{max} = \frac{2900}{T}$

Wien's displacement law. λ_{max} [µm], the wavelength at which the peak in the emission spectrum occurs; T [K], the temperature of the emitting surface.

• $\theta = 90 - \Phi_{lat} + \phi_{sol.dec}$

The solar elevation θ at solar noon, at a location with latitude Φ_{lat} , at the time of year when solar declination is $\phi_{sol.dec}$. Latitude is negative in the southern hemisphere; and solar declination is negative during northern hemisphere winter.

