EAS270,	"The Atmosphere"	Quiz 2	17 Oct, 2005
)	1	0)

Professor: J.D. Wilson <u>Time available</u>: 25 mins <u>Potential Value</u>: 10%

Instructions: For all 16 questions, choose what you consider to be the best (or most logical) option, and use a pencil to mark that choice on the answer form. Eqns/data given at back. You may keep this quiz.

- 1. In a pristine (ie. clean) atmosphere, the sky colour is attributable to _____
 - (a) preferential atmospheric scattering of red wavelengths
 - (b) preferential atmospheric scattering of blue wavelengths $\checkmark \checkmark$
 - (c) preferential atmospheric absorption of red wavelengths
 - (d) preferential atmospheric absorption of blue wavelengths
 - (e) Mie scattering by air molecules
- 2. On a clear, sunny day with light winds, maximum surface temperature occurs
 - (a) At local solar noon, when $K \downarrow$ is maximum
 - (b) When $L \downarrow$ is maximum
 - (c) When $L \uparrow$ is minimum
 - (d) When net radiation Q^* crosses zero in the upward direction
 - (e) At the afternoon transition (through zero) of the net radiation $Q^* = K^* + L^* \quad \checkmark \checkmark$
- 3. Suppose on a particular sunny summer afternoon the net radiation was $Q^* = 500 \text{ W m}^{-2}$, and the sensible and latent heat fluxes were $Q_H = 180, Q_E = 300 \text{ W m}^{-2}$. Neglecting any storage term, the soil heat flux Q_G was therefore _____ W m⁻²
 - (a) -980
 - (b) 20 **√**√
 - (c) 120
 - (d) 480
 - (e) 980
- 4. The diurnal (daily) range in temperature normally _____
 - (a) is greatest in the mid-stratosphere
 - (b) is greatest at the tropopause
 - (c) is greatest at the ground surface $\checkmark \checkmark$
 - (d) increases with increasing distance into the soil
 - (e) is constant for any given location and season

- 5. In an inversion layer of the atmosphere, vertical motion is _____ and the direction of sensible heat transfer is _____ the ground.
 - (a) Suppressed; towards $\checkmark \checkmark$
 - (b) Enhanced; towards
 - (c) Enhanced; away from
 - (d) Suppressed; away from
 - (e) None of the above
- 6. We expect the wind near ground to diminish overnight because _____
 - (a) Unstable temperature stratification suppresses vertical exchange of air parcels, thus decoupling the surface air from the driving winds aloft
 - (b) Stable temperature stratification (inversion) enhances vertical exchange of air parcels, thus decoupling the surface air to the driving winds aloft
 - (c) Stable temperature stratification (inversion) suppresses vertical exchange of air parcels, thus decoupling the surface air from the driving winds aloft $\checkmark \checkmark \checkmark$
 - (d) Unstable temperature stratification enhances vertical exchange of air parcels, thus decoupling the surface air to the driving winds aloft
 - (e) The air is loaded with dew, thus heavier, and so it slows down
- 7. On earth's equator, the ground rotates about the local vertical at a rate of _____ [rad day⁻¹] and the Coriolis parameter f _____
 - (a) 0; is zero $\checkmark \checkmark$
 - (b) $\pi/4$; equals the earth's rotation rate
 - (c) 2π ; equals the earth's rotation rate
 - (d) 360; is zero
 - (e) 1370; equals the solar constant
- 8. "Cross-isobar flow" occurs in the _____ layer of the atmosphere. That flow is oriented ______ a center of Low pressure, and results in ______ vertical motion
 - (a) Tropospheric; away from; ascending
 - (b) Geostrophic; away from; descending
 - (c) Geostrophic; into; ascending
 - (d) Friction; into; descending
 - (e) Friction; into; ascending $\checkmark \checkmark$

- 9. According to the "Geostrophic-wind" and "Gradient-wind" scientific models for the winds in the free atmosphere, the wind should blow _____ to pressure contours, with a speed that is _____ to the distance between the contours.
 - (a) parallel; inversely proportional $\checkmark \checkmark$
 - (b) parallel; proportional
 - (c) perpendicular; inversely proportional
 - (d) perpendicular; proportional
 - (e) adjacent; indifferent
- 10. A parcel of air at the 700 mb level which is moving at constant speed parallel to circular isobars _____
 - (a) Experiences no centripetal acceleration
 - (b) Is not subject to the Coriolis force
 - (c) Is not subject to the pressure-gradient force
 - (d) Accelerates towards the centre of low pressure $\checkmark \checkmark$
 - (e) Accelerates along the local tangent to the isobars
- 11. Which of the following air properties would normally increase as you travelled upward through the summer, daytime Planetary Boundary Layer (Friction Layer)?
 - (a) air density
 - (b) air pressure
 - (c) air temperature
 - (d) wind speed $\checkmark \checkmark$
 - (e) humidity

For the remaining questions, please refer to the attached charts.

- 12. The height gradient $\Delta h/\Delta x$ in the region of the NE corner of Alberta is about _____
 - (a) $2.5 \ge 10^{-4} \operatorname{Pa} \mathrm{m}^{-1}$
 - (b) $2.5 \ge 10^{-4} \ge m^{-1} \sqrt{4}$
 - (c) $60 \text{ dam } \text{km}^{-1}$
 - (d) 1221 Pa
 - (e) 0.25 m m^{-1}

- 13. Based on this calculated the height gradient and assuming geostrophic flow, the 500 mb windspeed at the NE corner of Alberta (latitude 60° N) should be about _____ m s⁻¹
 - (a) 2.5
 - (b) 5
 - (c) 10
 - (d) 20 ✓√
 - (e) 40
- 14. From the 850 mb analysis, this region (ie. NE corner of Alberta and NW Territories further NE) is experiencing
 - (a) warm advection $\checkmark \checkmark$
 - (b) cold advection
 - (c) NW wind
 - (d) saturated air $(T_d = 10^{\circ} \text{ C} \text{ exceeds } T = 3^{\circ} \text{ C})$
 - (e) warming of 4.1° C since the previous observation
- 15. The feature visible in the 850 mb flow contours in west-central and south-western Alberta is called a/n _____ . It can be attributed to _____
 - (a) isotherm; temperature advection
 - (b) ridge; enhanced friction over the Rockies
 - (c) lee trough; enhanced friction over the Rockies $\checkmark \checkmark$
 - (d) lee valley; temperature advection
 - (e) lee cyclone; cyclogenesis

16. At Stony Plain the temperature and dewpoint at 700 mb were about _____ °C

- (a) -18; -27
- (b) 0; +1
- (c) 0; $-22 \quad \checkmark \checkmark$
- (d) +14; +1
- (e) -22; 0

Equations and Data.

 $\bullet \ Q^* = Q_H + Q_E + Q_G + Q_S$

The surface energy balance. All fluxes are in $[W m^{-2}]$. Q^* the net radiation, positive if directed towards the ground surface; Q_H, Q_E the sensible heat flux and the latent heat flux, positive if directed away from the ground surface; Q_G the soil heat flux, positive if directed away from the ground surface; Q_S , the storage term. The Bowen ratio $B = Q_H/Q_E$.

 $\bullet \ Q^* = \ K^* \ + L^* \ = K \downarrow - K \uparrow + L \downarrow - L \uparrow$

The surface radiation balance. All fluxes are in $[W m^{-2}]$. $K \downarrow, K \uparrow$, the incoming and outgoing solar fluxes (net solar, $K^* = K \downarrow -K \uparrow$); and $L \downarrow, L \uparrow$, the incoming and outgoing longwave fluxes (net longwave, $L^* = L \downarrow -L \uparrow$).

•
$$V = \frac{g}{f} \frac{\Delta h}{\Delta x}$$

The Geostrophic wind equation. Δh [m], the change in height of a constant pressure surface over distance Δx [m] normal to the height contours; $f = 2\Omega \sin \phi$ [s⁻¹] the Coriolis parameter (where $\Omega = 2\pi/(24 \times 60 \times 60) = 7.27 \times 10^{-5} \text{ s}^{-1}$ is the angular velocity of the earth, and ϕ is latitude); $g \sim 10 \text{ [m s}^{-2}$] acceleration due to gravity.

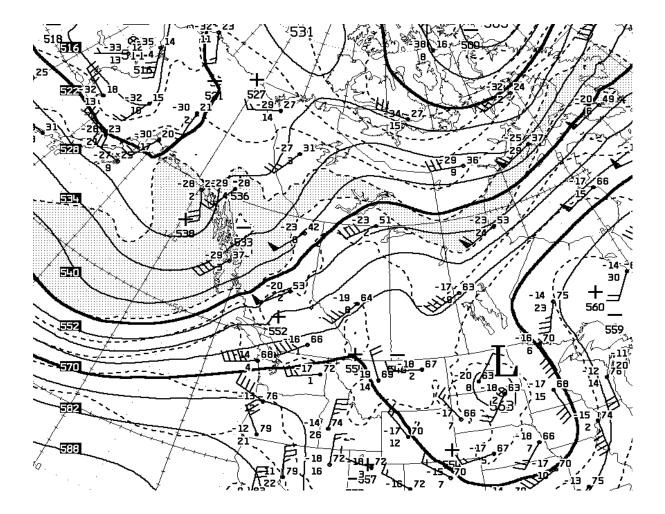


Figure 1: 500 mb analysis. 12Z Oct 12, 2005.

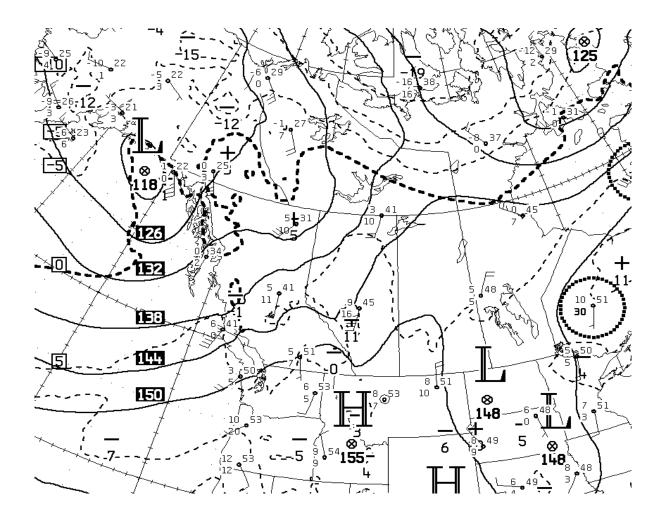


Figure 2: 850 mb analysis. 12Z Oct 12, 2005.

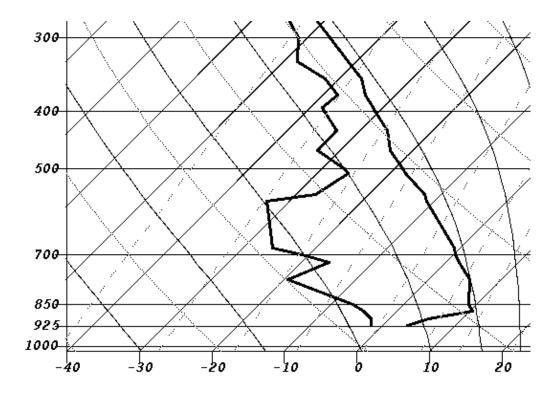


Figure 3: Skew T - log P diagram. Stony Plain, 12Z Oct 12, 2005.