EAS270, "The Atmosphere" Quiz 3 7 Nov, 2005

Professor: J.D. Wilson Time available: 25 mins Potential Value: 10%

Instructions: For all 16 questions, choose what you consider to be the best (or most logical) option, and use a pencil to mark that choice on the answer form. **Eqns/data given at back**. You may keep this quiz.

- 1. A parcel of air has pressure P, temperature T, vapor pressure e, and dewpoint temperature T_d . You could determine its relative humidity $\operatorname{RH} = e/e_*(T)$ given which two factors?
 - (a) T, e
 - (b) *T*, *P*
 - (c) T, T_d
 - (d) T_d, e
 - (e) Both option (a) and option (c) are correct $\checkmark \checkmark$
- 2. A parcel of air with temperature $T = 15^{\circ}$ C and dewpoint $T_d = 10^{\circ}$ C has absolute humidity ρ_v [kg m⁻³] = ____
 - (a) $9.2 \ge 10^{-5}$
 - (b) $1.8 \ge 10^{-3}$
 - (c) $9.2 \ge 10^{-3}$ $\checkmark \checkmark$
 - (d) 0.18
 - (e) 1
- 3. On a skew T log p diagram, the two families of curves that are parallel to each other *high in the atmosphere* are _____
 - (a) dry adiabats & moist adiabats $\checkmark \checkmark$
 - (b) isotherms & isobars
 - (c) isobars & dry adiabats
 - (d) isobars & moist adiabats
 - (e) isotherms & dry adiabats
- 4. Wind machines are liable to be useful in preventing damaging low temperatures from occurring next to ground on _____
 - (a) clear, windy nights
 - (b) cloudy, windy nights
 - (c) cloudy, snowy nights
 - (d) clear, calm nights $\checkmark \checkmark$
 - (e) rainy nights

- 5. When air temperature (T) is in the range $-4^{\circ} \leq T \leq 0^{\circ}$ C, raising the relative humidity to 100% or greater tends to result in formation of _____ due to the _____ of ice nuclei.
 - (a) snow; influence
 - (b) ice crystals; presence
 - (c) supercooled droplets; scarcity $\checkmark \checkmark$
 - (d) supercooled droplets; abundance
 - (e) supercooled ice crystals; abundance
- 6. Due to the ______ effect, the environmental vapour pressure required to assure the equilibrium of a droplet of pure water of temperature T and radius $R \ll 1\mu m$ _____ the benchmark $e_*(T)$.
 - (a) curvature; is less than
 - (b) curvature; exceeds $\checkmark \checkmark$
 - (c) solute; is less than
 - (d) solute; exceeds
 - (e) Bergeron; equals
- 7. If air temperature in a certain layer decreases with increasing height by 0.9°C per 100 m, the layer is _____ (Note: take 0.5°C per 100 m for the SALR)
 - (a) hydrostatic
 - (b) absolutely unstable
 - (c) absolutely stable
 - (d) conditionally unstable $\checkmark \checkmark$
 - (e) adiabatic
- 8. Which association is false?
 - (a) Cirrus wispy
 - (b) Cumulus heapy
 - (c) Stratus layered
 - (d) Nimbus producing rain, hail or snow
 - (e) Orographic produced by airflow over very warm ocean $\checkmark \checkmark$
- 9. The aim when seeding cold clouds with ice nuclei to reduce hail damage is _____
 - (a) to oppose or even reverse the Bergeron process
 - (b) to cause the warm cloud process to work in parallel with the Bergeron process
 - (c) to increase competition between ice nuclei for cloud liquid water $\checkmark \checkmark$
 - (d) to ensure that ice nuclei have a smaller terminal velocity
 - (e) to ensure that ice nuclei have a larger terminal velocity

- 10. If the environmental temperature at height z is $T_e(z)$, the buoyancy force (per unit mass) on a parcel at that level that has a different temperature T_p is _____
 - (a) g (gravitational acceleration, ie. gravity force per unit mass)
 - (b) $g(T_p T_e)/T_e \quad \checkmark \checkmark$
 - (c) gT_p
 - (d) $g T_p/T_e$
 - (e) $g T_e/T_p$
- 11. The occurrence of hail is more probable beneath _____
 - (a) cirrocumulus in the tropics
 - (b) altostratus at mid- or polar- latitudes
 - (c) fairweather cumulus at any latitude
 - (d) shallow mid-latitude nimbostratus
 - (e) cumulus clouds with deep vertical development $\checkmark \checkmark$
- 12. Neglecting entrainment, saturated parcels subjected to a small but abrupt (and adiabatic) vertical displacement in the atmosphere would subsequently oscillate in height if _____
 - (a) the environmental lapse rate (ELR) equalled the dry adiabatic lapse rate (DALR)
 - (b) the environmental lapse rate equalled the saturated adiabatic lapse rate (SALR)
 - (c) the DALR and the SALR were equal
 - (d) the atmospheric layer in question were unconditionally stable $\checkmark \checkmark$
 - (e) cloud condensation nuclei were present in adequate number

For the remaining questions, please refer to the attached Stony Plain sounding (00Z 23 July 2005, ie. 18:00 MDT 22 July).

- 13. Consider the stratification of the layer beneath 850 mb. This layer is almost "well-mixed" relative to the dry adiabats, but not quite: rather, it should be classified as _____
 - (a) unconditionally unstable $\checkmark \checkmark$
 - (b) unconditionally stable
 - (c) conditionally unstable
 - (d) conditionally stable
 - (e) an inversion

- 14. The above diagnosed stratification (ie. stability classification) is _____ in the near-ground layer during summer afternoon, but _____ above 850 mb
 - (a) rare; much more common
 - (b) rare; impossible
 - (c) common; rare $\checkmark \checkmark$
 - (d) invariably present; common
 - (e) infrequent; usual

15. The ELR feature based at about 840 mb could be called _____

- (a) an elevated inversion $\checkmark \checkmark$
- (b) a dry adiabat
- (c) a saturated adiabat
- (d) an isotherm
- (e) an isobar
- 16. From information given with the sounding we can reasonably guess that height contours at 500 mb should _____ height contours at 850 mb. (Hint: ignore any possible friction; assume 6 dam spacing at both levels).
 - (a) run parallel with
 - (b) are more tightly packed together than
 - (c) run roughly perpendicular to
 - (d) coincide with
 - (e) both (b) and (c) $\checkmark \checkmark$

Equations and Data.

• $e = \rho_v R_v T$

The ideal gas law for water vapor. e [Pascals], pressure; ρ_v , [kg m⁻³] the absolute humidity (ie. vapor density); T [Kelvin], the temperature; and $R_v = 462$ [J kg⁻¹ K⁻¹], the specific gas constant for water vapor).

Table 1: Equilibrium vapour pressure $e_*(T)$ [mb] versus temperature T [C].

T	$e_*(T)$	T	$e_*(T)$	T	$e_*(T)$	T	$e_*(T)$	T	$e_*(T)$	T	$e_*(T)$
0	6.11	5	8.72	10	12.27	15	17.04	20	23.37	25	31.67
1	6.57	6	9.35	11	13.12	16	18.17	21	24.86	26	33.61
2	7.05	7	10.01	12	14.02	17	19.37	22	26.43	27	35.65
3	7.58	8	10.72	13	14.97	18	20.63	23	28.09	28	37.80
4	8.13	9	11.47	14	15.98	19	21.96	24	29.83	29	40.06

