EAS270, "The Atmosphere"

Assignment 1

Due 5 pm 19 Oct., 2011

<u>Professor</u>: J.D. Wilson

<u>Value</u>: 10%

Instructions: All questions have equal value. Retain high precision in your calculations, but please round your final answers to three significant digits¹ and state the unit (examples: 20.1° C, 1.09 kg m^{-3} , 391 W m^{-2} , $4.11 \times 10^2 \text{ W m}^{-2}$). Document your working tidily — there is potentially a one mark penalty for illegible or unintelligible working. Please drop off your assignment (labelled with your name and ID number) in class, or in the drop-off box outside Tory 3-40. A two mark penalty will be applied for late assignments received before noon Thursday 20 Oct. After that time, the late penalty will be five marks.

Task: Add together the *last five digits* of your student I.D. number, to form what we shall interpret as a ground-level temperature T_1 , as a latitude ϕ_1 , and as a surface shortwave reflectivity (albedo) α_1 expressed as a percentage, e.g.

I.D. number 1198765 $\rightarrow T_1 = 35^{\circ}$ C, $\phi_1 = 35^{\circ}$, $\alpha_1 = 35\% \equiv 0.35$.

In what follows, the subscript "1" denotes properties at level 1, which is ground level. Level 2 (denoted with subscript "2") will be the 850 hPa level.

- 1. Assuming the emissivity of the ground surface is $\epsilon = 0.96$, compute the emitted longwave radiative flux density " $L_1 \uparrow$ " corresponding to your ground temperature T_1 .
- 2. Compute the ratio of this flux $L_1 \uparrow$ to the flux " $L_{\text{ref}} \uparrow$ " that would be emitted by the same surface if it had a temperature of 0°C (273.15 K).
- 3. Based on your $L_1 \uparrow$ but neglecting incoming (i.e. downward) longwave radiation $(L \downarrow)$, compute the net radiation " Q_{*1} " at solar noon at the times of the equinox and express this as a fraction of the solar constant Q_{*1}/S_0 . (To compute $K \downarrow$ assume the solar beam is not subject to scattering or absorption by the atmosphere, i.e. is transmitted without attenuation so that $K \downarrow$ depends only on the latitude ϕ_1 .)
- 4. Your net radiative energy supply Q_{*1} would suffice to evaporate what depth d_1 of water over a period of one hour? (Take the density of liquid water to be $\rho_w = 1000 \text{ kg m}^{-3}$)
- 5. Assuming ground-level pressure is $P_1 = 925$ hPa, compute the ground-level air density ρ_1 implied by this combination (P_1, T_1) .
- 6. Assuming the specific humidity at ground is $q_1 = 0.002$, compute the vapour pressure e_1 .
- 7. Compute the mass of water m_1 in one cubic metre of air at ground level.

¹However if you are providing an answer in Kelvin units, it is appropriate to provide five significant figures, e.g. 278.75 K.

- 8. Adopt the hydrostatic law (given as data), evaluating the right hand side as $-\rho_1 g$, to compute the vertical distance Δz between the ground and the 850 hPa surface (i.e. the altitude where pressure is $P_2 = 850$ hPa). Note: here we are using the hydrostatic law in an approximate way, by placing a fixed constant value of $\rho (= \rho_1)$ on the right hand side.
- 9. Assuming the temperature variation from ground to the P_2 level follows the dry adiabatic lapse rate (DALR), compute the temperature T_2 (in Celcius units) at this level.
- 10. Again use the hydrostatic law, evaluating the right hand side as $-\rho_2 g$, to determine the pressure P_3 at a point that is 300 m above the 850 hPa surface.

Data

- 1 hPa = 100 Pa, $T [K] = T [^{\circ}C] + 273.15$ (Note that a *change* of one degree Kelvin is the same as a *change* of one degree Celcius).
- $\frac{\Delta P}{\Delta z} = -\rho g$

The hydrostatic law. ΔP [Pascals], the change in pressure as one ascends a distance Δz [m]; ρ [kg m⁻³] the air density; g = 9.81 [m s⁻²] acceleration due to gravity.

• $P = \rho R T$

The ideal gas law. P [Pascals], pressure; ρ , [kg m⁻³] the density; T [Kelvin], the temperature; and R = 287 [J kg⁻¹ K⁻¹], the specific gas constant for air.

• $e = \rho_v R_v T$

The ideal gas law for water vapor. e [Pascals], the vapour pressure (i.e. partial pressure of water vapour); ρ_v , [kg m⁻³] the absolute humidity (ie. vapor density); T [Kelvin], the temperature; and $R_v = 462$ [J kg⁻¹ K⁻¹], the specific gas constant for water vapor.

•
$$q = \rho_v / \rho$$

the specific humidity

• $L \uparrow = \epsilon \sigma T^4$

Stefan-Boltzmann law. $L \uparrow [W m^{-2}]$, the emitted longwave energy flux density; ϵ , the emissivity of the surface (dimensionless); $\sigma = 5.67 \times 10^{-8}$ [W m⁻² K⁻⁴], the Stefan-Boltzmann constant; T [K], the surface temperature.

•
$$\frac{\Delta T}{\Delta z} = -0.01 \, [\mathrm{K} \, \mathrm{m}^{-1}]$$

The dry adiabatic lapse rate (DALR), i.e. for every one metre of ascent the temperature decreases by 0.01 degrees Kelvin.

• $L_v = 2.5 \times 10^6 \, \mathrm{J \, kg^{-1}}$

The latent heat of vapourization of water

• $\theta = 90 - \phi + \phi_{sol.dec}$

The solar elevation θ at solar noon, at a location having latitude ϕ , at the time of year when solar declination is $\phi_{sol.dec}$. Latitude is taken as positive for both hemispheres; solar declination is negative if the subsolar point is in the opposite hemisphere.