EAS270, "The Atmosphere"	Quiz 1	21 Sept., 2009
--------------------------	--------	----------------

Professor: J.D. Wilson Time available: 15 mins Potential Value: 10%

Instructions: For all 10 questions, choose what you consider to be the best (or most logical) option, and use a pencil to mark that choice on the answer form. **Eqns/data given at back**. You may keep this quiz.

- 1. The troposphere, which extends from the base of the atmosphere to a height of about ______, is characterized by a steady ______ of climatological mean temperature with increasing height
 - (a) 80 kilometers; increase
 - (b) 50 kilometers; increase
 - (c) 10 kilometers; increase
 - (d) 50 kilometers; decrease
 - (e) 10 kilometers; decrease $\checkmark \checkmark$
- 2. The two most abundant permanent gases in earth's homosphere are _______; and together they account for ______% of the air by volume
 - (a) $N_2, O_2; 79\%$
 - (b) N₂, O₂; 99% $\checkmark \checkmark$
 - (c) N_2 , Ar ; 79%
 - (d) O_2 , Ar ; 99%
 - (e) $N_2, H_2O; 63\%$
- 3. Density of the atmosphere _____
 - (a) increases with increasing height
 - (b) does not change with height within the homosphere (lowest 80 km)
 - (c) decreases with increasing height $\checkmark \checkmark$
 - (d) has the MKS unit kg m^{-1} ("kilograms per metre")
 - (e) has the MKS unit Pa ("Pascals")
- 4. About ______ % of atmospheric mass lies above the 700 hPa level
 - (a) 99
 - (b) 70 √√
 - (c) 50
 - (d) 30
 - (e) 1

- 5. The gas released to the atmosphere by volcanoes ("outgassing") is mostly composed of
 - (a) nitrogen and oxygen
 - (b) nitrogen and water vapour
 - (c) carbon dioxide and nitrogen
 - (d) water vapour and carbon dioxide $\checkmark \checkmark$
 - (e) methane and ozone
- 6. Solar elevation above the horizon in Edmonton (latitude 53.5 degrees N), at solar noon on the day of the winter solstice, is _____ degrees
 - (a) 13 ✓✓
 - (b) 23.5
 - (c) 45
 - (d) 60
 - (e) 75
- 7. If earth's average surface temperature were to increase, the rate of emission of radiation energy from its surface would _____ and the wavelength (λ_{max}) of the peak in the emission spectrum would shift towards _____ wavelengths
 - (a) increase, shorter $\checkmark \checkmark$
 - (b) increase, longer
 - (c) decrease, longer
 - (d) decrease, shorter
 - (e) increase, redder

8. The numerical value of earth's "solar constant" is about _____

- (a) 9.8 $[m s^{-2}]$
- (b) $0.5 \ [\mu m]$
- (c) $4 \, [\mu m]$
- (d) $500 \, [W \, m^2]$
- (e) 1370 $[{\rm W~m^{-2}}]$ $\checkmark\checkmark$

For the remaining questions, please refer to the attached surface analysis.

- 9. The pressure change at the Alberta station farthest to the northwest (and reporting $T = 6^{\circ}$ C, $T_d = 3^{\circ}$ C) was _____
 - (a) a rise of 19 hPa
 - (b) a rise of 1.9 hPa $\checkmark \checkmark$
 - (c) no change
 - (d) 74 hPa
 - (e) 7.4 hPa
- 10. Sea-level corrected pressure at the location marked by the large cross (X, just north of the northern border of British Columbia) was about _____ hPa
 - (a) 10.14
 - (b) 1004
 - (c) 1014 ✓✓
 - (d) 1020
 - (e) 1027

Equations and Data.

•
$$p = \frac{M g}{A}$$

The pressure p [Pa] that results when a mass M [kg] of air overlies area A [m²], where $g \approx 10 \text{ [m s}^{-2}$] is the acceleration due to gravity

• 1 hPa = 100 Pa

Pressure unit conversion. Sea-level pressure on earth is roughly 1000 hPa.

• $L \uparrow = \epsilon \sigma T^4$

Stefan-Boltzmann law. $L \uparrow [W m^{-2}]$, the emitted longwave energy flux density (for which our textbook uses the symbol "I"); ϵ , the emissivity of the surface (dimensionless); $\sigma = 5.67 \times 10^{-8}$ [W m⁻² K⁻⁴], the Stefan-Boltzmann constant; T [K], the surface temperature.

• $\lambda_{max} = \frac{2900}{T}$

Wien's displacement law. λ_{max} [µm], the wavelength at which the peak in the emission spectrum occurs; T [K], the temperature of the emitting surface.

• $\theta = 90 - \Phi_{lat} + \phi_{sol.dec}$

The solar elevation θ at solar noon, at a location with latitude Φ_{lat} , at the time of year when solar declination is $\phi_{sol.dec}$. Latitude is negative in the southern hemisphere; and solar declination is negative during northern hemisphere winter.

Figure 1: CMC surface analysis, 12Z Sept. 10, 2009