Goals for today: 26 Oct., 2011

* continuing Ch 8: “Atmospheric Circulation and
Pressure Distributions”

* Examples of synoptic scale and mesoscale circulation systems that are
driven by geographic diversity — in topography, temperature,
moisture

* e.g. Chinook wind & lake breeze

* Oceanic general circulation
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Foehn/Chinook/etc. — synoptic scale wind down mountain slope

“‘when winds warmed by compression descend the eastern slopes of the
Rocky Mountains in North America, they are called Chinooks” (native-
American term meaning “snow-eater”). Condensation of vapour on the
windward slopes also contributes to the warmth of the dry, descending
lee-side current

“Low-pressure systems east of the mountains cause these strong winds
to descend the eastern slopes... most common in winter when mid-
latitude cyclones routinely pass over the region”

Warm lee current may ride

above a layer of cold dense air Temperatare
on the lee side... frontal
boundary may move back and
forth — rapid temperature
changes
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Chinook conditions in Ab. — same as conditions for strong lee trough

Strong SW 700 mb flow strikes
mountalns (approx ) perpendlcularly

Surface lee trough of low pressure; tight

contours, windy
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We have an example today of the lee trough and associated conditions
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Rockies
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The Santa Ana wind of

1
) S. California is a wind
\ with an easterly
| component — air sinks

L5 a5 it moves west to the
coast (see Fig. 8-22)
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Sea breezel/lake breeze

* mesoscale

* caused by differential
warming (“thermally
driven”)

* shallow circulation
* masked (ie. effect over-
ridden) by strong

synoptic-scale winds

* may reverse at night
(“land breeze”)
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* sea/lake breeze key aspect of climate of many coastal cities
* also affects the air pollution meteorology
* e.g. here stably-stratified onshore wind off Lk. Erie is heated

from below, becomes unstable, resulting in “fumigation” —
elevated stack plume is mixed down to the surface
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Slope winds — buoyancy driven

Near surface air is warmer

than air at same level over

valley — sustained updraft
sink

Valley

breeze APk

North |
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Result, commonly, is cloud along ridges and
clear skies over valley

During light winds on clear nights minor
topographic undulations result in buoyancy-driven
“drainage flows” — and cold air will “pond” at the

lowest elevations (“frost pockets”) ridge soaring — Creston,

BC (flights of several

are common)
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General Circulation of the Oceans

* we saw that the distribution of continents results in an atmospheric general
circulation that reflects non-uniformity of surface elevation and energy balance

* the oceanic circulation is even more definitively controlled by continents — coastal
(side) boundaries have no analog in the atmosphere

* oceanic currents are also an important mechanism for redistribution of heat — and
their spatial distribution plays a role in climate (e.g. maritime versus continental
climates) and weather

* oceans and atmosphere are a “coupled system” exchanging heat, water,
momentum, carbon dioxide... air-sea interaction

 surface ocean currents are wind-driven; Coriolis force affects their direction;
buoyancy (ocean temperature & salinity) also a factor

* like the atmosphere, the ocean has a boundary layer: indeed two — the ocean
surface boundary layer and the ocean bottom boundary layer



Direction of sfc currents related to wind drag

Easterlies =
R — g % g
Westerlies > o T & //'—3‘
ey T2 i AR
Trade .;:\'".'F é"“ﬁﬁ;}’!c e
Wlds i /l/‘/x \ , ;k\ :—'—ﬁv /
20° 7 T4 4
> Nort Bavtori cament_<—— =7 S~ gqureg 4'}
_— :_——# Equaﬁaﬁ;@untercurram-—b Z ="ai *t', “.
- — L = \ M 5

.
‘..—-'
de—— | %5 i i Q f
South Equatorial current

o YRR
t PRI
| Pl 2

c -

e "%GT}“ Xd

\ \ = ’)) \é
4%;\.\\ ““‘:—j‘)]/) PN T e
N A TN )

mmm)> Sfc Wind s West wind arit ' m
=R e

P Warm currefilt S =
e F'Q 8-16 (January mean) .
mmmm)> Cold current :




Direction of sfc currents related to wind drag
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Direction of sfc currents not identical to wind direction
Wind

* in N. hemisphere sfc current
flows about 45 degrees to right
of sfc wind

Surface current
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... resulting in Coastal Upwelling

* wind parallel to coast induces
surface current away from coast,
colder water upwells**

* offshore winds produce same
effect

** generally the ocean surface
boundary layer is not very well
mixed — because absorption
of sunlight near the surface
results in it's being stably
stratified (except at high
latitudes in winter)




El Nino/ La Nina So potentially can be forecast by
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coupled oc/atmos prediction model

An internally-generated disruption or instability of the ocean-atmos.
system in the tropical Pacific having important consequences for weather
around the globe and giving some basis for long range weather
forecasting (though presently with low skill) — not externally forced™*

**non-periodic, average interval between El Nino's is 40 months
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El Nino/ La Nina

(no signal in summer for W. Cda)
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El Nino/ La Nina

* Is connected with the Southern-Oscillation, a reversing anomaly in sea-
level E-W pressure gradient across equatorial Pacific... El/La Niha
opposite phases of the El Nifo-Southern Oscillation (ENSO)
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Normal conditions

* easterly Pacific tradewinds pile up warm surface water in the west Pacific -
so that sea surface is about 1/2 meter higher at Indonesia than at Ecuador.
A weak surface ocean counter-current then develops

* sea surface temperature is about 8°C higher in the west, with cool
temperatures off South America, due to an upwelling of cold (nutrient-rich)
water from deeper levels

* strong convection/rain over the
warmest water, and the east
Pacific is relatively dry N

* strong equatorward-flowing
coastal current ("Humboldt” or

“Peruvian”) sustains the
upwelling cold deep-water

" Equivalent to
, , | Fig. 8-18, for
S. hemisphere
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