Absolute humidity or "vapour density"

Specific humidity

Mixing ratio

 $\rho_{\nu} = \frac{\text{mass of water vapour}}{\text{volume of sample}}$ $[kg m^{-3}]$

 $q = \frac{\text{mass of water vapour}}{\text{total mass of sample}} = \frac{\rho_{\nu}}{\rho}$ almost identical to }

 $r = \frac{\text{mass of water vapour}}{\text{mass of dry air in sample}}$

 $[kg kg^{-1}]$ $[g kg^{-1}]$

Partial pressure of water vapour

6

[Pa]

"At the same pressure and temperature, humid air weighs less (and has lower density) than dry air"

We shall prove this...

The ideal gas law inter-relates vapour pressure (e) & absolute humidity (ρ_{ij})

$$e = \rho_{V} R_{V} T$$
"vapour"

1
$$e = \rho_{v} R_{v} T$$

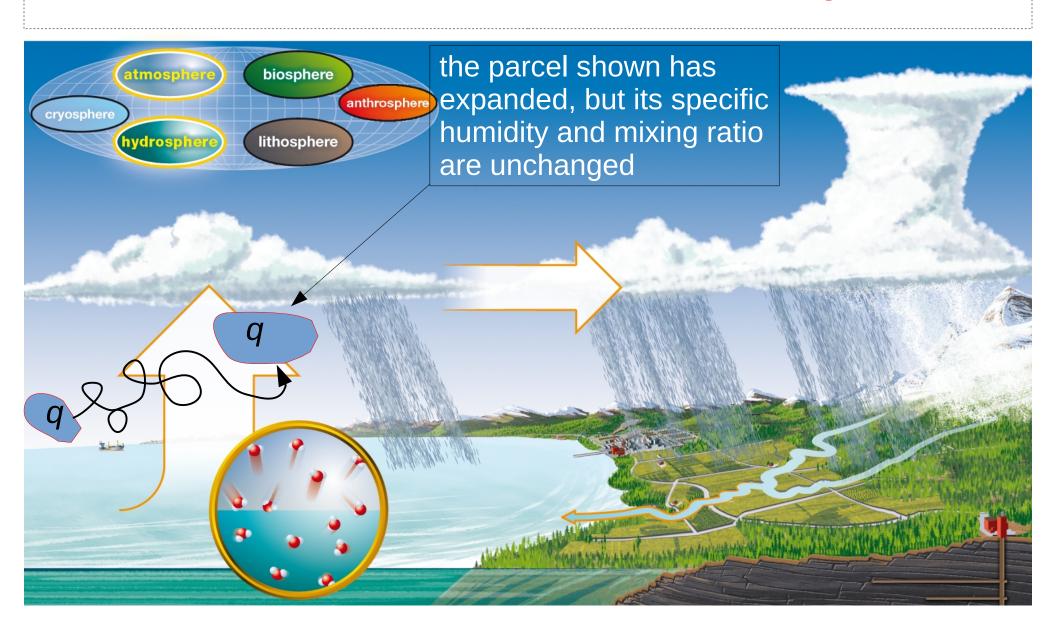
"vapour"

 $R^{*} = 8.314 \text{ J mol}' \text{ K}'$
 $R_{v} = \frac{R^{*}}{MM} = 462 \text{ J kg}^{-1} \text{ K}^{-1}$

$$P_{\rm d} = \rho_{\rm d} R_{\rm d} T$$

$$= 462 \text{ J kg}^{-1} \text{K}^{-1}$$

$$= 0.018 \text{ kg mol}^{-1}$$
3 $P = \rho R_d T_v$
"virtual"


TABLE 7.2 | Indicators of atmospheric water vapour. $MM = 0.018 \text{ kg mol}^{-1}$

Absolute Measures	Equation	Comments		
Partial pressure of water vapour ("vapou pressure"), e	A	not conserved in vertical motion		
	$\varepsilon = 0.622 = \text{ratio of } R_{\text{d}} \text{ to } R_{\text{v}}$			
Absolute Humidity	$\rho_{\rm v} = \frac{\rm e}{\rm R_{\rm v} T}$	not conserved in vertical motion; can be measured directly		
	(e \	conserved in vertical motion; used on thermodynamic		
Mixing Ratio r =	$r = \varepsilon \left(\frac{e}{P - e}\right)$	diagrams	Numerically, q and r are almost identical $(q \approx r)$.	
Specific Humidity	$q = \frac{r}{1+r}$	conserved in vertical motion	Both "remain constant so	
Dew-Point Temperature	"temperature to which air must be cooled for saturation to occur (with no change in pressure or moisture	not conserved in vertical mot reported as part of routine w	tion; can be measured directly;	

content)"

Specific humidity and Mixing ratio behave as "tracers" so long as parcels remain unsaturated.

i.e. do not change

Past 24 Hour Conditions

During calm, cloudless weather the late afternoon dewpoint is sometimes considered as a reasonable estimate for overnight minum temperature: e.g.

saturation - latent heat
- o result in droplets

that impede LP and enhance LJ

_		
Im	neria	l Units
	, , , , ,	

mperial Units				
Date / Time (MDT)	Conditions	Temp (°C)	Humidity (%)	Dew Point (°C)
26 September 2	012			
8:00	Sunny	6	91	4
7:00	Clear	6	89	4
6:00	Clear	6	87	4
5:00	Partly Cloudy	7	85	5
4:00	Mostly Cloudy	9	79	5
3:00	Mostly Cloudy	10	78	6
2:00	Mostly Cloudy	10	77	6
1:00	Cloudy	11	80	7
00:00	Cloudy	11	81	8
25 September 2	012			
23:00	Cloudy	12	77	8
22:00	Mostly Cloudy	13	75	8
21:00	Clear	13	70	8
20:00	Clear	14	66	7
19:00	Sunny	15	59	7
18:00	Sunny	17	54	7
17:00	Sunny	17	56	8
16:00	Sunny	18	57	10
15:00	Sunny	18	58	9
14:00	Sunny	18	58	9
13:00	Sunny	18	56	9
12:00	Sunny	17	57	9
11:00	Sunny	15	68	9
10:00	Sunny	12	82	9
9:00	Sunny	10	88	8
8:00	Sunny	9	90	7

"At the same pressure and temperature, humid air weighs less (and has lower density) than dry air" 4/11

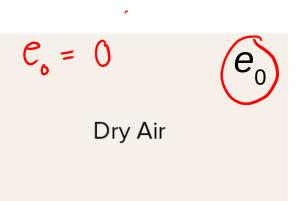
Proof:

Proof:
$$R_{\star}$$
 universal gas const. $P \ V = n \ R_{\star} T$ Ω no, of moles $\rho = \frac{MM_{v} \ n_{v} + MM_{d} \ n_{d}}{V}$ $\Delta \rho = \frac{MM_{v} \ n_{v} + MM_{d} \ n_{d}}{V}$ $\Delta \rho = \frac{MM_{v} \ \Delta n_{v} + MM_{d} \ \Delta n_{d}}{V}$ $\Delta \rho = \frac{MM_{v} \ \Delta n_{v} + MM_{d} \ \Delta n_{d}}{V}$ $\Delta \rho = \frac{MM_{v} \ \Delta n_{v} + MM_{d} \ \Delta n_{d}}{V}$ $\Delta \rho = \frac{MM_{v} \ \Delta n_{v} - MM_{d} \ \Delta n_{v}}{V}$

So if one adds $\Delta n_{_{v}}$ moles of vapour to dry air, keeping volume, pressure and temperature unchanged, then

$$\Delta n = 0$$
 and so $\Delta n_{\rm d} = -\Delta n_{\rm v}$ <

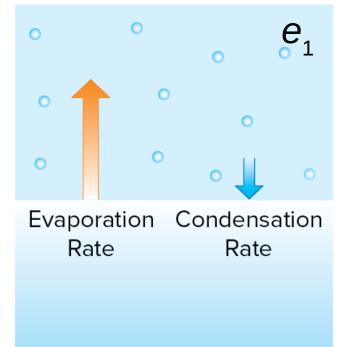
$$\rho = \frac{\text{MM}_{\text{v}} \, n_{\text{v}} + \text{MM}_{\text{d}} \, n_{\text{d}}}{V}$$
 Differentiating,
$$\Delta \rho = \frac{\text{MM}_{\text{v}} \, \Delta \, n_{\text{v}} + \text{MM}_{\text{d}} \, \Delta \, n_{\text{d}}}{V}$$


$$\Delta \rho = \frac{\mathrm{MM_{v}} \, \Delta n_{\mathrm{v}} - \mathrm{MM_{d}} \, \Delta n_{\mathrm{v}}}{V}$$

$$\frac{\Delta \rho}{\Delta n_{\rm v}} = \frac{1}{V} \left[MM_{\rm v} - MM_{\rm d} \right]$$

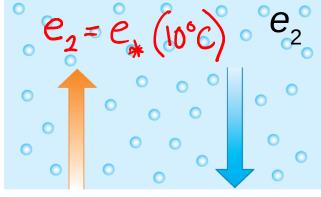
negative, because

$$MM_{v} = 0.018 [kg mol^{-1}]$$


$$MM_d = 0.029 [kg mol^{-1}]$$

$$T = 10^{\circ}C$$

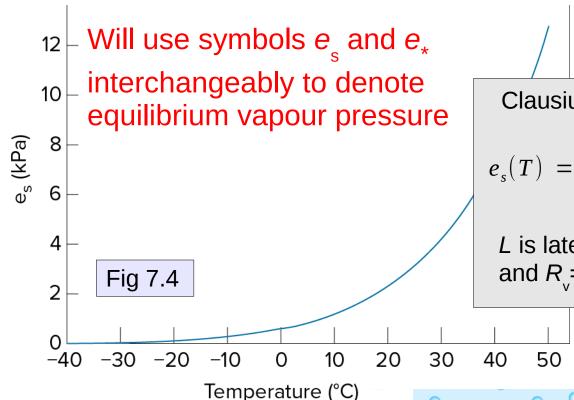
non-equilibrium



$$T = 10^{\circ}C$$

Fig 7.2

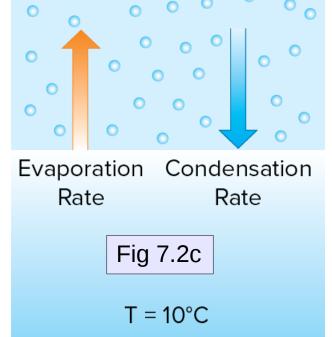
b)

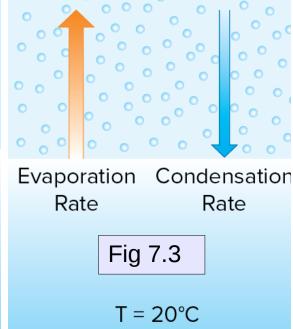

equilibrium

Evaporation Condensation Rate Rate

$$T = 10^{\circ}C$$

c) STOPPED HERE 170CT.




Clausius-Clapeyron eqn. gives $e_s(T)$ curve.

$$e_s(T) = 6.11 \exp\left[\frac{L}{R_v} \left(\frac{1}{273.15} - \frac{1}{T}\right)\right], \text{ hPa} \quad \boxed{\text{Eq 7.1}}$$

L is latent heat (of vaporization or sublimation) and $R_v = 461.5$ [J kg⁻¹ K⁻¹] is gas const for w.v.

- alternative formulae for $e_s(T)$ exist
- will expect students to be able to use Table 7.1

0.03

Tiny water droplets in the atmosphere can (and mostly do) remain unfrozen for temperatures far below 0°C, and are said to be "supercooled."

Perhaps $e_*(T)$ is a strange choice of "benchmark" for vapour pressure

0.7

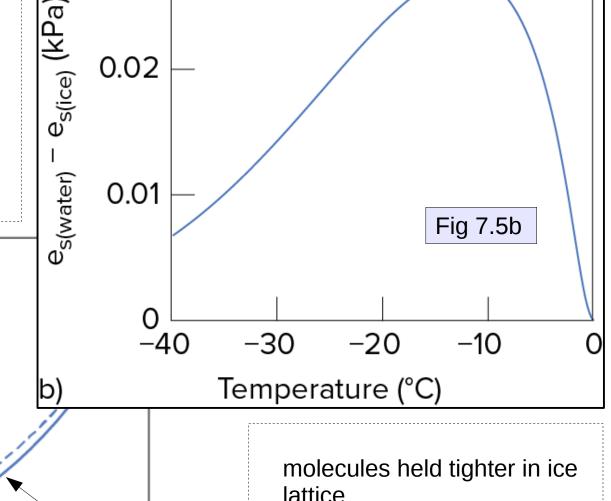
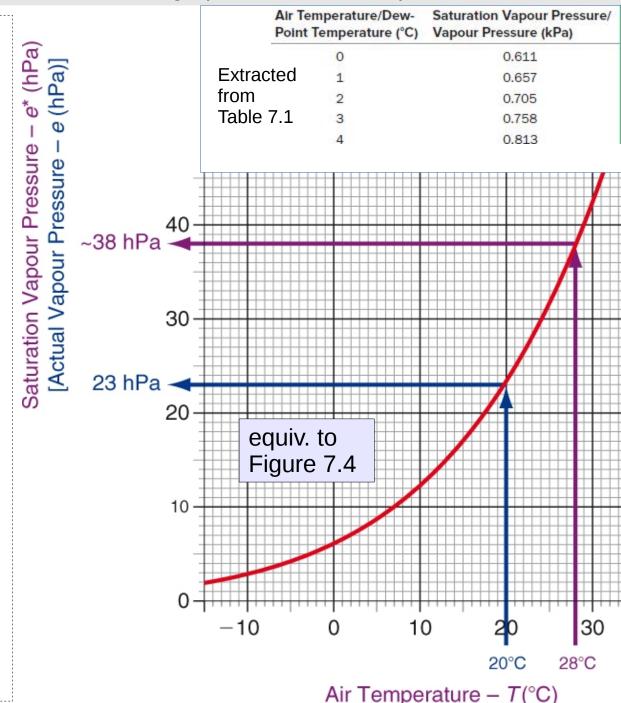


Fig 7.5a 0.6 0.5 0.4 0.3 water 0.2 ice 0.1 -15 -10 -20-40 Temperature (°C) a)


lattice

Vapour pressure e and dewpoint temperature T_d are in 1:1 relationship – they are not independent pieces of information. If you know one, you can deduce the other. Symbolically, we write

$$e = e_*(T_d)$$

meaning "e is a function of T_d " (the function being the e_* curve). Similarly,

$$T_d = e_*^{-1}(e)$$

Check: is the adjacent figure consistent with Table 7.1?

[Dew-Point Temperature – T_d (°C)]

 $e_* = e_*(T)$

Sec 7.3

insert

 \boldsymbol{T} and get out equilibrium vapour pressure \boldsymbol{e}_{*}

 $e = e_*(T_d)$

insert

 T_{d} and get out actual vapour pressure e

 $T_d = e_*^{-1}(e)$

insert

 $m{e}$ (actual vapour pressure) and get out $T_{_{
m d}}$

 $T = e_*^{-1}(e_*)$

insert

 e_{\perp} (equilibrium vapour pressure) and get out T

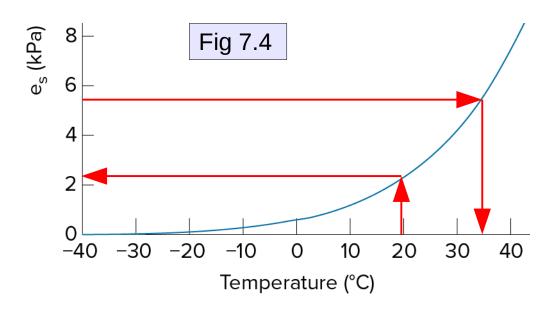
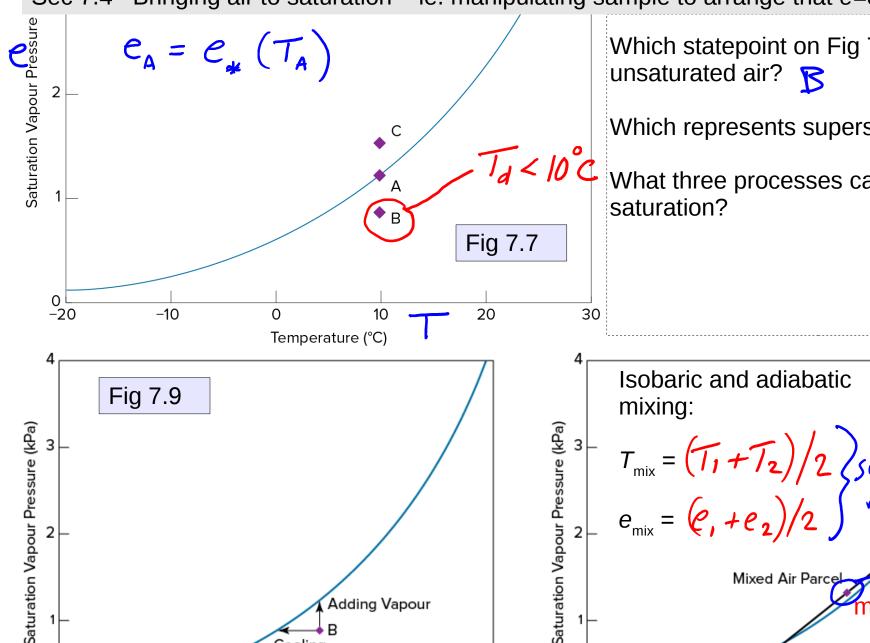



TABLE 7.1 | Saturation vapour pressure at different air temperatures, or vapour pressure at different dew-point temperatures, a over flat surfaces of pure liquid water or ice.b

Air Temperature/Dew- Point Temperature (°C)	Saturation Vapour Pressure/ Vapour Pressure (kPa)	Air Temperature/Dew- Saturation Vapour Pressure Point Temperature (°C) Vapour Pressure (kPa)
	over water (ice)	If $T=10$, what is the equilib.v.p.? 0.611
-14 -13 -12 -11 -10 -9	0.181 (0.208) 0.198 (0.225) 0.217 (0.244) 0.238 (0.264) 0.260 (0.286) 0.284 (0.310)	1 0.657 2 If T_d =10, what is the 0.705 3 v.p.? 0.758 4 0.813 5 If T =10, what is the 0.872 v.p.? 0.935 7 1.001
-8 -7 -6 -5 -4 -3 -2 -1	0.310 (0.335) 0.338 (0.362) 0.369 (0.391) 0.402 (0.421) 0.437 (0.455) 0.476 (0.490) 0.517 (0.528) 0.562 (0.568)	8 If T_d =10, what is the equilib.v.p.? 1.147 10 If e =13.12 hPa, what is T_d ? 1.401 13 If e *=13.12 hPa, what is T_d ? 1.598 15
0	0.611 (0.611)	If e*=13.12 hPa, what is <i>T</i> ?

Bringing air to saturation – ie. manipulating sample to arrange that $e=e^*(T)$ Sec 7.4 11/11

Adding Vapour

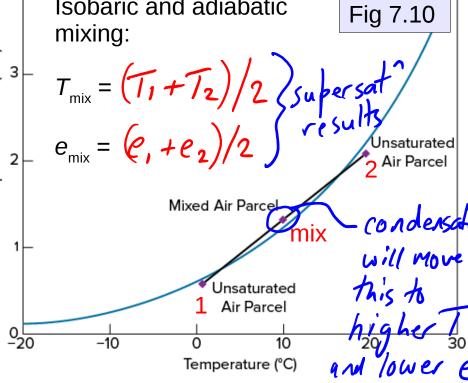
20

30

Cooling

Temperature (°C)

10


0 -20

-10

Which statepoint on Fig 7.7 represents

Which represents supersaturated air? 🧨

What three processes can bring air to

Topics/concepts covered

- humid parcels are positively buoyant (relative to dry parcels at same temperature and total pressure)
- common humidity variables, and their connection with one another
- notion of a "tracer" of parcel identity
- understanding definition/meaning of equilibrium vapour pressure
- 1:1 relationship between vapour pressure e and dewpoint $T_{_{
 m d}}$
- using the $e^*(T)$ table (or curve) to get e^* given T, or, e given T_d or T given e^* , or, T_d given e

"Because the relationship between dew-point temperature and vapour pressure is the same as that between air temperature and saturation vapour pressure, we can use Table 7.1 to determine dew-point temperature given vapour pressure" (p164)

TABLE 7.1 | Saturation vapour pressure at different air temperatures, or vapour pressure at different dew-point temperatures, a over flat surfaces of pure liquid water or ice. b

	Saturation Vapour Pressure/ Vapour Pressure (kPa)	하고 맛있다. 다른 아이트 (10 Personal Control C	Saturation Vapour Pressure/ Vapour Pressure (kPa)
-40	0.013 (0.019)	0	0.611
-39	0.014 (0.021)	1	0.657