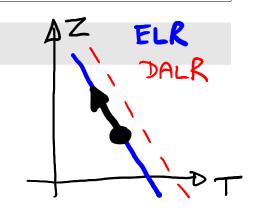
Today (Mon. 24 Oct. 2016) let's start by going over the question posed in file Ch7-B

TABLE 7.1 | Saturation vapour pressure at different air temperatures, or vapour pressure at different dew-point temperatures, a over flat surfaces of pure liquid water or ice.


Air Temperature/Dew- Point Temperature (°C)	Saturation Vapour Pressure/ Vapour Pressure (kPa)	Air Temperature/Dew- Saturation Vapour Pressure/ Point Temperature (°C) Vapour Pressure (kPa)				
	over water (ice)	If $T=10$, what is the equilib.v.p.? 0.611				
-14 -13 -12 -11 -10 -9 -8 -7	0.181 (0.208) 0.198 (0.225) 0.217 (0.244) 0.238 (0.264) 0.260 (0.286) 0.284 (0.310) 0.310 (0.335) 0.338 (0.362)	1 $C_{*}(10) = 1.23 kl_{a}$ 0.657 2 If $T_{d}=10$, what is the 0.705 3 $V.p.? C = 1.23 kl_{a}$ 0.758 4 0.813 5 If $T=10$, what is the 0.872 V.p.? Cant do 0.935 7 1.001 8 If $T_{d}=10$, what is the equiliby $v.p.?$				
-6 -5 -4 -3 -2 -1	0.369 (0.391) 0.402 (0.421) 0.437 (0.455) 0.476 (0.490) 0.517 (0.528) 0.562 (0.568) 0.611 (0.611)	9 equilib.v.p,? $Cant do$ 1.147 1.227 11 If e=13.12 hPa, what is T_d ? $T_d = e_{ac}(e)$ 1.401 1.497 1.598 1.598 1.704 If e*=13.12 hPa, what is T_d ? T_d ? T_d ? T_d and T_d ? T_d ? T_d ? T_d and T_d ? T_d ? T_d and T_d ?				

"Neutral (static) stability" of an unsaturated layer

- ELR is equal to the dry adiabatic lapse rate (10K per kilometer)
- such a layer is termed "neutral with respect to dry adiabatic motion"
- an unsaturated parcel, displaced up or down from its starting point, remains at the same temperature as its environment, and so experiences no buoyancy force: no work by/against gravity is done when the parcel rises or descends

"Neutral stability" of a saturated layer

- ELR is equal to the saturated adiabatic lapse rate
- such a layer is "neutral with respect to saturated adiabatic motion"
- a saturated parcel, displaced up or down from its starting point, remains at the same temperature as its environment, and so experiences no buoyancy force: no work by/against gravity is done when the parcel rises or descends

What does it imply if a layer is "neutrally stratified"?

How to find the LCL? By the formula below – or (on the skew-T diagram) by Normand's Rule.

Recall
$$\Gamma_d = -0.0098 \, \text{K m}^{-1}$$

$$\Gamma_{T_d} pprox -0.0018\,\mathrm{K\,m}^{-1}$$
 despoint labor rate

$$\frac{\Delta(T-T_a)}{\Delta z} = T_a - T_{T_a} = -0.008 \frac{K}{m}$$

$$0 - (T - T_a)_{sfc} = -0.008 \times (Z_{LCL} - 0)$$

SALR LCL ZLCL = 125 (T-Ta)

Figure 8.3

Suppose surface temperature and dewpoint are $T=29^{\circ}$ C, $T_{d}=17^{\circ}$ C. How high is the LCL for a rising parcel? What is the parcel's temperature at the LCL?

$$Z_{LCL} = 125 (29-17) = 125 \times 12 = 1500 \text{ m}$$

 $T_{LCL} = 29 + T_d (1500) = 29 - 15 = 14^{\circ} \text{ C}$

Suppose the SALR is $\Gamma_s = -0.004 \, \mathrm{K \, m}^{-1}$. If the parcel continues to rise above the LCL, what is its temperature at a height of 2000 above the surface?

$$T_{2000} = 14 - (.004) \times (2000 - 1500)$$

= 12°C

- a) restoring force accentuates original change: "unstable"
- b) restoring force opposes original change: "stable"
- c) no restoring force: "neutral"

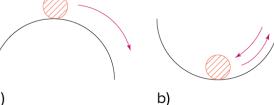
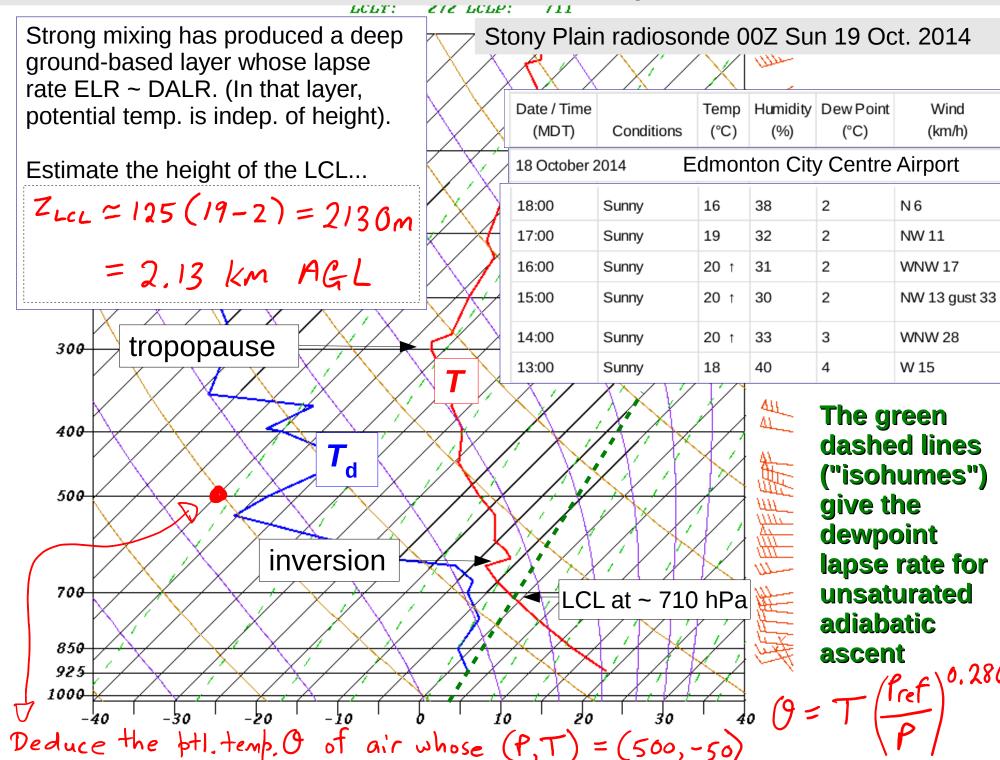



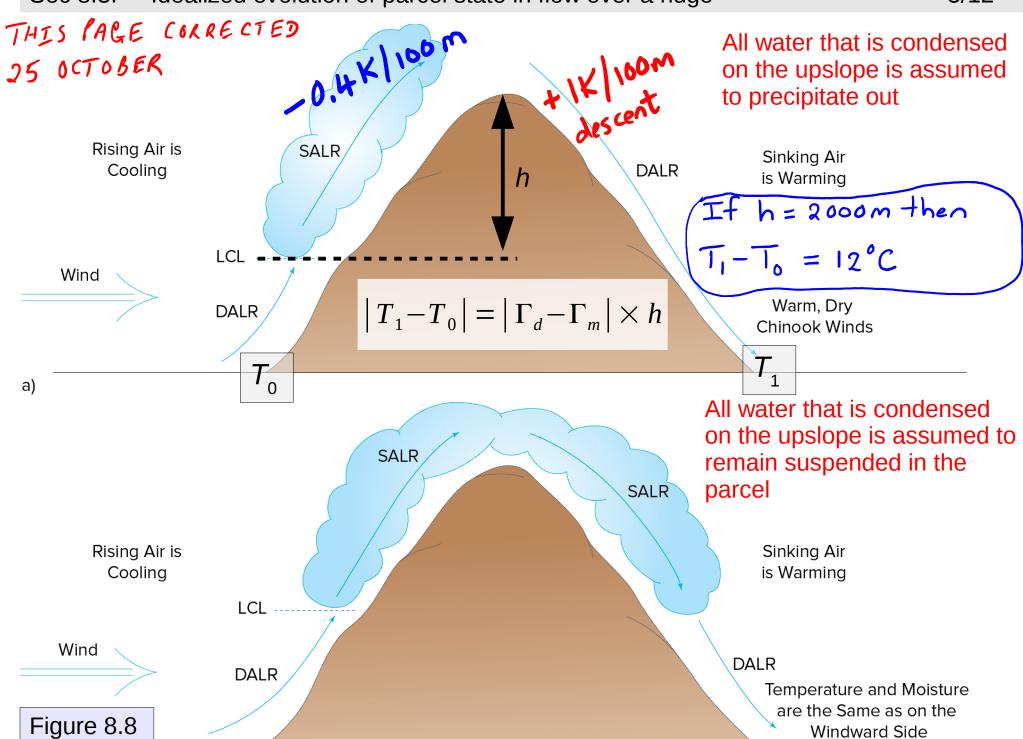
Figure 8.11

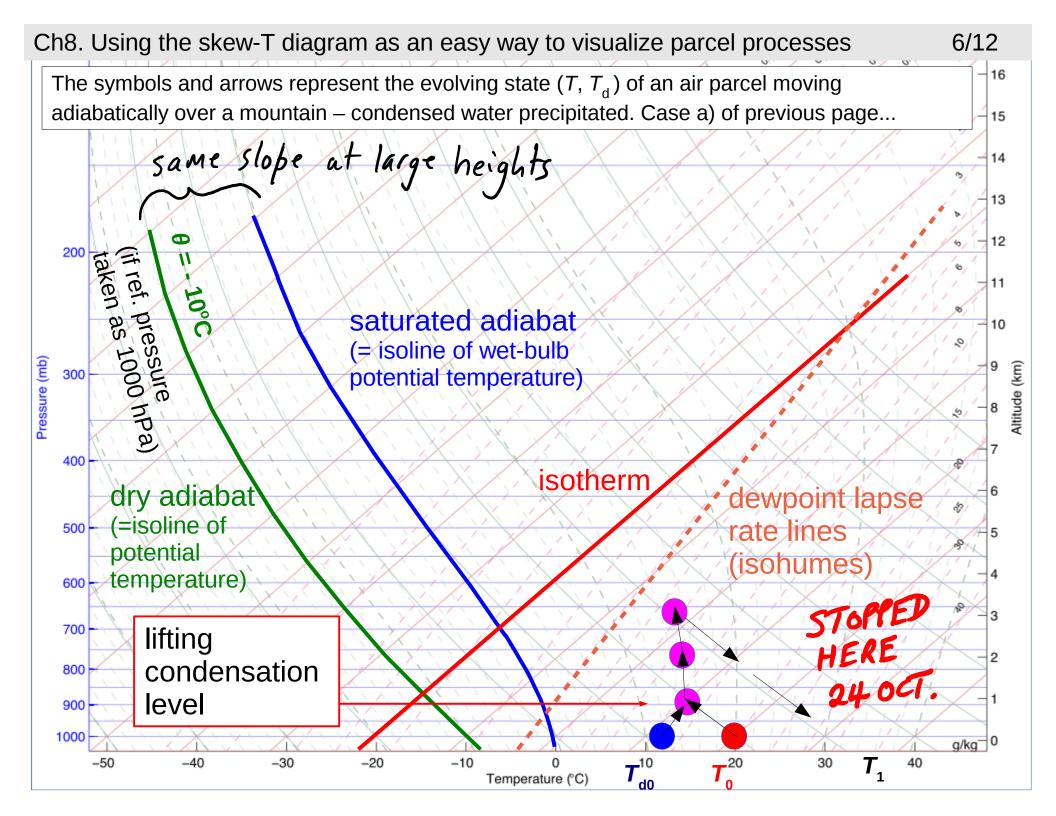
71119 WSE Edmonton Stony Plain Observations at 00Z 19 Oct

2014

Height of the 710 hPa level ~ (2998+2743)/2 ~ 2.87 km ASL or **2.17 km AGL**

-	PRES hPa	HGHT m	TEMP C	DWPT C	RELH %	MIXR g/kg	DRCT deg	SKNT knot	THTA K	
-	1000.0	22 696		Stony Pla	ain 696 ı	n ASL				
	918.0	766	19.2	2.2	32	4.91	320	3	299.6	
	902.0	914	17.6	1.3	33	4.69	335	5	299.5	ı
	869.8	1219	14.4	-0.5	36	4.27	255	12	299.3	ı
	850.0	1413	12.4	-1.6	38	4.02	260	13	299.1	ı
	838.7	1524	11.3	-1.8	40	4.03	275	13	299.2	ı
	808.3	1829	8.5	-2.2	47	4.05	275	18	299.3	ı
	779.0	2134	5.6	-2.6	56	4.08	275	21	299.4	ı
	765.0	2284	4.2	-2.8	60	4.09	275	23	299.4	ı
	750.5	2438	2.8	-3.8	62	3.87	275	25	299.5	ı
	722.5	2743	0.0	-5.7	65	3.48	265	26	299.8	ı
	700.0	2998	-2.3	-7.3	69	3.17	260	29	299.9	ı
	671.0	3333	-5.3	-8.1	81	3.11	260	31	300.2	
	643.7	3658	-7.8	-11.3	76	2.52	260	32	301.0	
	636.0	3752	-8.5	-12.2	75	2.37	263	34	301.2	
	627.0	3863	-7.3	-17.3	45	1.58	267	36	303.8	
	620.0	3951	-6.3	-22.3	27	1.04	270	38	305.9	
	619.1	3962	-6.4	-22.6	27	1.02	270	38	305.9	
	605.0	4143	-7.7	-26.7	20	0.72	270	39	306.4	
	595.4	4267	-8.9	-28.4	19	0.62	270	39	306.4	
	583.0	4430	-10.5	-30.5	18	0.52	270	46	306.4	
	572.3	4572	-11.1	-33.7	14	0.39	270	53	307.3	
	550.0	4877	-12.5	-40.5	8	0.20	270	47	309.2	
	534.0	5103	-13.5	-45.5	5	0.12	274	41	310.6	
	528.4	5182	-14.2	-45.2	5	0.13	275	39	310.8	
	500.0	5600	-17.7	-43.7	8	0.16	280	43	311.4	


note O is const.


in the layer in

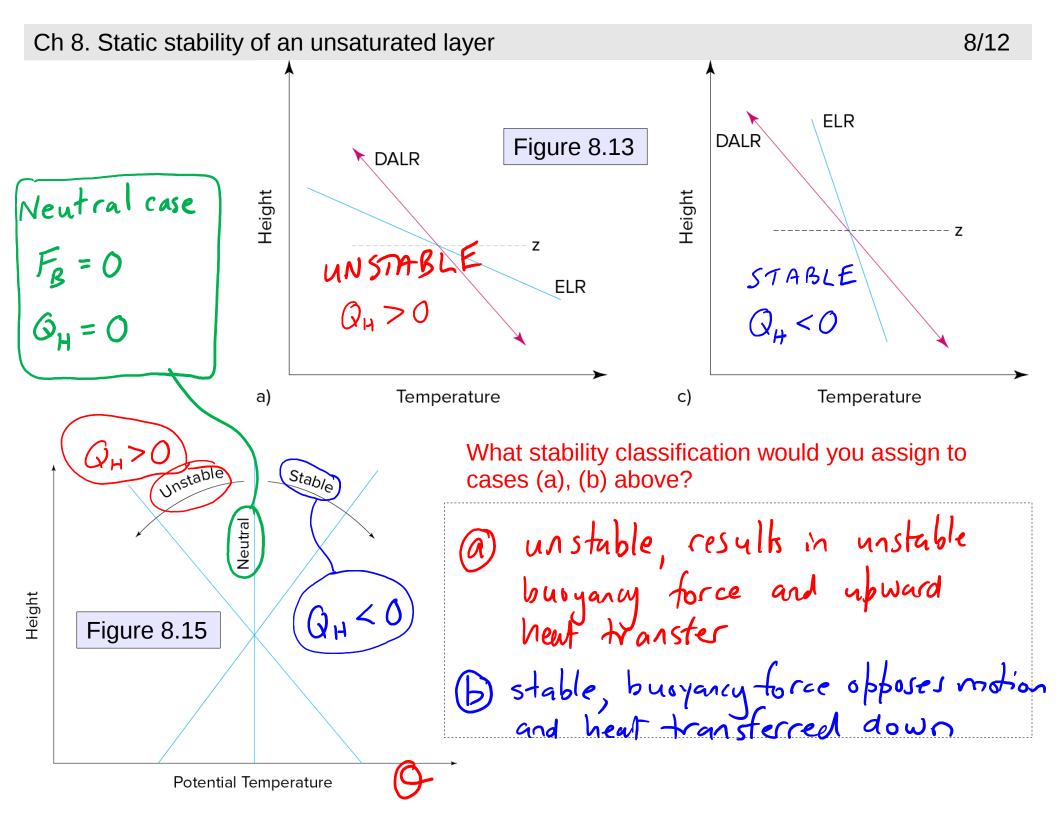
which ELR=DALR

Normand's rule:

Find the LCL graphically as the intersection of the isohume that runs through surface dewpoint with the dry adiabat that runs through surface temperature

Atmospheric stability [strictly, static stability] quantifies the tendency for an air parcel, once having been vertically displaced for whatever reason, to continue to move vertically

- Unstable layer if displaced upward, parcel experiences an upward buoyancy force
 if displaced downward, parcel experiences a downward buoyancy force
- Stable layer if displaced upward, parcel experiences a downward buoyancy force
 if displaced downward, parcel experiences an upward buoyancy force
- Neutral layer whether displaced upward or downward, parcel experiences <u>no</u> buoyancy force

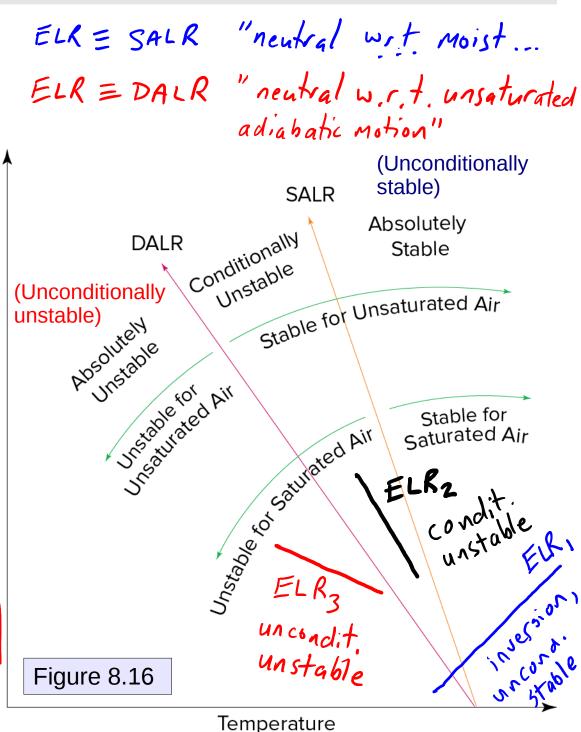

$$T(z), \theta(z)$$
 parcel environment $T_{\rm p}, \theta_{\rm p}$

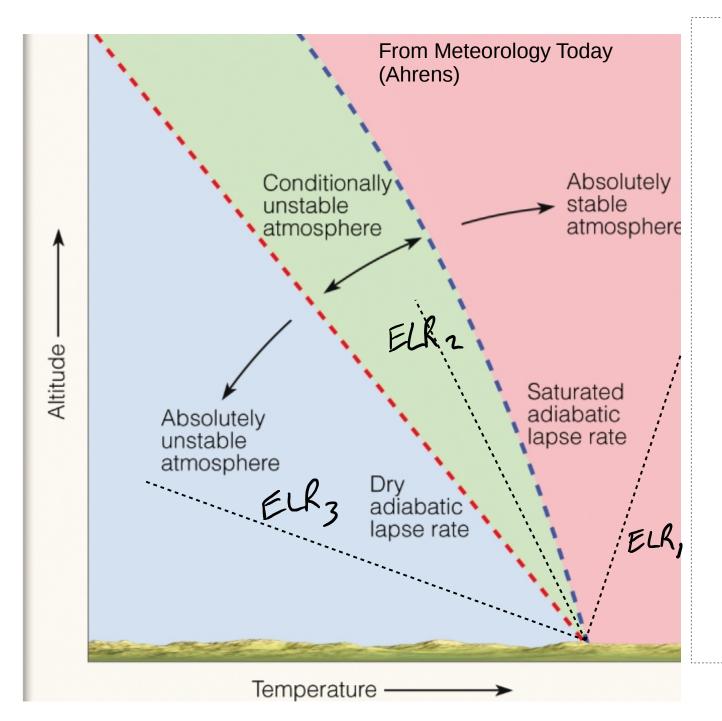
In general the sensible heat flux $Q_{\rm H}$ is proportional to (minus) the vertical gradient in potential temperature, $Q_{\rm H} \propto -\frac{\Delta \theta}{2}$

The buoyancy force per unit mass is given by the "reduced gravity"

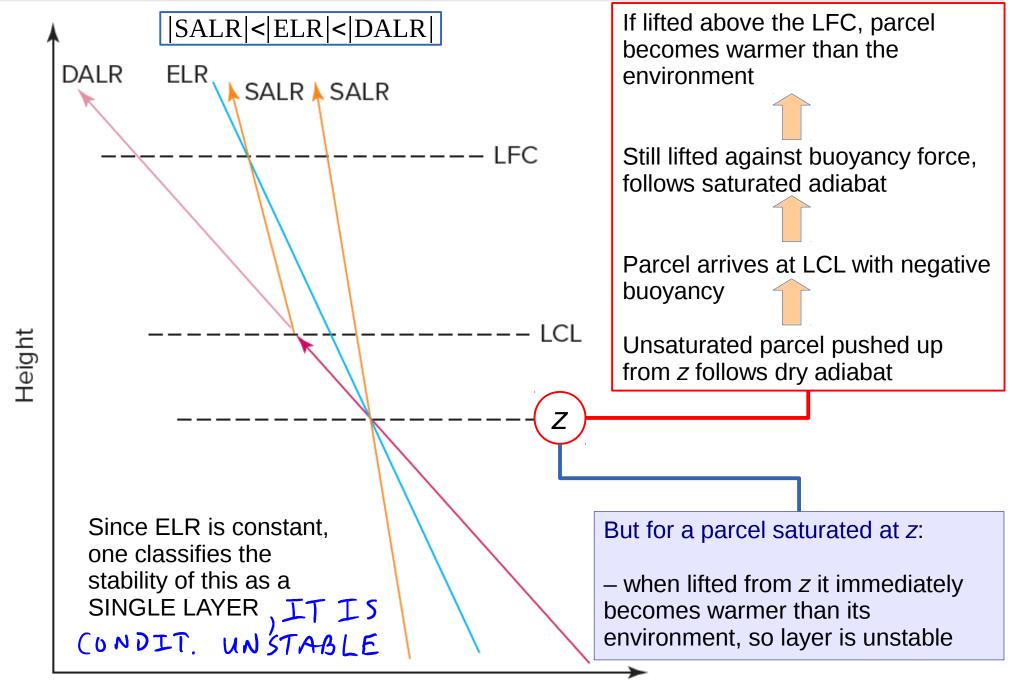
$$F_{B} = g \frac{T_{F} - T}{T} = g \frac{O_{p} - O}{O}$$
Kelvin unit on denom.

The ELR – alone – determines the static stability of a layer... not the actual temperature T(z), but the lapse rate $\mathrm{d}T/\mathrm{d}z$




The ELR of a layer classifies it as "conditionally unstable" (same as "conditionally stable") on the condition that:

- an unsaturated parcel, once dislodged, experiences a restoring buoyancy force
- BUT, a saturated parcel, once dislodged, experiences a buoyancy force in the direction of the original motion

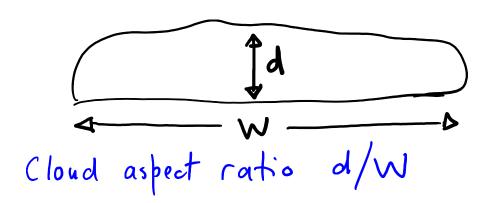

The criterion for conditional instability is:

|Ts| < |ELR | < |Ta| |SALR | < |ELR | < |DALR | ie. ELR lies between the +wo benchmarks

- only the slope of the environmental temperature profile matters
- the black dashed lines are idealized, simplified environmental profiles (constant ELR, i.e. slope)

Temperature (note: dewpoint not given)

Air forced to rise in an absolutely stable layer will tend to spread laterally and produce **stratiform** ("layer") clouds


- flat tops and bases
- small-moderate vertical development (thin cloud layer)

Fair weather Cu (David Adams; used with permission; http://www.davidadamsonline.com/)

In a conditionally unstable layer** of sufficient depth, rising air may produce *cumuliform* ("heapy") clouds with strong vertical development...

... provided parcels are lifted above the "level of free convection" (LFC)

** a deep <u>and</u> absolutely unstable layer almost never occurs in the atmosphere. In general, the only location where absolute instability can occur is in the Atmospheric Surface Layer (ASL), roughly the lowest 50 m

Topics/concepts covered

- Families of curves on the skew-T chart
- Deducing the LCL by formula, and using Norman's rule on a skew-T diagram
- Confirmation of the consistency of the two methods using Stony Plain sounding of 00Z 19 Oct. 2014
- Buoyancy force on a parcel determined by its temperature difference relative to the environment at the same level ("reduced gravity")
- On the basis of their ELR, recognizing layers that are:
 - Unstable (also named "unconditionally unstable" or "absolutely unstable")
 - Stable (also named "unconditionally stable" or "absolutely stable")
 - Conditionally unstable
 - Neutral