
EAS327: Appendix on Molecular Transport in

a Materially-homogeneous Medium

Consider the case of a medium that is stationary, in the sense that there is
nowhere any bulk motion - that is, in any finite region, the atoms or molecules
composing the material have no organised (coherent, same-way) velocity.

There is nevertheless a random motion of individual molecules/atoms
(I’ll call them ”particles”), even though the particles may be restrained by
bonding forces; individual particles have kinetic energy and potential energy,
and they move. The degree of motion, expressed statistically, is related to
the temperature. For a gas, the root-mean-square molecular velocity (which
is the same as the standard deviation of the velocity) is proportional to the
Kelvin temperature.

Molecular Heat Transport, ie. conduction, and Fourier’s
Law

Suppose now that our medium is not homogeneous in its temperature: let
there be a temperature gradient ∂T/∂x.

This means that we have particles with higher temperature (greater r.m.s.
velocity, ie. more energy) in contact with those of lower energy. For simplic-
ity, say the “fast ones” are on the right. Statistically, when the fast particles
bounce off the slow ones to the left, there is (again, statistically) a trend
towards equalization of the sharing of energy; progressively those on the left
gain (on average) in energy (get into a more frantic state of motion) while
those on the right lose; that is, the gas on the left gets warmer, and that on
the right cooler - heat has been transported.

This immensely complex field of motion of individual particles results in a
macroscopic law called Fourier’s law of conduction, which states that the heat
flux density along the x-axis, which we’ll call QHx (with the x signifying this is
the x-component of a vector) and which has units [J m−2 s−1] is proportional
to the temperature gradient:

QHx = −k
dT

dx
(1)

where the constant of proportionality k (with messy units of [J s−1 K−1 m−1])
is called the “conductivity” of the medium. If we introduce the “grad op-
erator” as a shorthand for the vector gradient (the vector each of whose
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components is a spatial derivative) then relative to Cartesian coordinates

∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
(2)

and the vector heat flux density is

−→
QH = −k ∇T = −k
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(3)

where please note that ∂T/∂x is called a “partial derivative” and indicates
the rate of change of T along the x axis.

If the medium has density ρ and specific heat capacity c then the conduc-
tivity may be expressed in terms of a “thermal diffusivity” κ [m2 s−1] which
is defined such that1

k = ρ c κ (4)

and so then Fourier’s Law reads
−→
QH = −ρ c κ ∇T (5)

“Diffusivities” always carry the units of [velocity x length].

Molecular mixing, ie. diffusion, and Fick’s Law

Now suppose that our medium is a gas or fluid, and that it is composed of a
mixture of two species, A and B.

If A and B are uniformly mixed - the state of maximum disorganisation,
maximum entropy - things are static. But suppose instead, that B is present
at higher concentration CB [kg m−3] on the right, at large x, that is, we have
a concentration gradient ∂CB/∂x. Then simply as a “law of large numbers”
expressing the outcome of the chaotic shiftiness of the molecular positions,
since there are more B’s per unit volume on the right than on the left, there
is a slow migration of B, on average, towards the left. This fact is expressed
by Fick’s law of diffusion, which going straight to the vector form, states that

the vector mass flux density
−→
Qm [kg m−2 s−1] is given by

−→
QH = −DBA ∇CB (6)

where DBA is called the “molecular diffusivity of B in A” and by symmetry
equals DAB. We often drop the “A in B” words, and speak of the molecular
diffusivity of (say) carbon dioxide, it being implicit that we mean in, say, air.

1Symbols for the thermal diffusivity vary; another common one is DH .
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How does this relate to our “Ohm’s Law analogy” laws?

In our course we need laws to express the exchange of heat and mass between
a fluid, in an arbitrary state of motion (which might be the state of rest
- though of course rest can only exist at the macroscopic level), and an
immersed body of arbitrary geometry. Thus the exchange process is not
necessarily diffusion (in the case of mass transport) or conduction (case of
heat transport), for it may well be that along part of the “transport pathway”
bulk velocity of the medium plays a role, that is, the transport may be a mix
of diffusion/conduction and convection, for example conduction right hard
against the body where the fluid is at rest, but convection away from the
body.

Our Ohm’s law analogy is a “bulk” formulation that subsumes both types
of transport (diffusive and convective), throwing the specifics into the mag-
nitude of the transport resistance. For heat transport (including the effects
of “all agencies” but radiation), the Ohm’s Law analogy is

QH = ρ c
T1 − T2

rH

(7)

If it happened that we knew that we were dealing with purely molecular
conduction, and the length of the transport pathway was dx, then clearly,
invoking the ”true law’ (Fourier’s law) we can evaluate the transport resis-
tance as

rH =
dx

κ
(8)

which (you can check) is dimensionally consistent. In a purely conductive
scenario, the resistance is simply the length of the path, divided by the
thermal diffusivity.
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