<u>Professor</u>: J.D. Wilson <u>Time available</u>: 80 mins <u>Value</u>: 20%

Instructions: Closed book exam. Please record your answers in the exam booklet. Pertinent data and diagrams are at the back, and should be read before answering any questions.

Multi-choice (20 x $\frac{1}{2}\% \rightarrow 10\%$)

- 1. The circuit shown in Figure (1) is known as a
 - (a) lowpass RC filter
 - (b) highpass RC filter
 - (c) Wheatstone bridge
 - (d) Half-bridge or voltage divider $\checkmark \checkmark$
 - (e) Error-detector
- 2. In a rigorous interpretation of Figure (1), the internal resistance of the voltage supply should be considered to have been
 - (a) ignored
 - (b) subtracted from the supply voltage V
 - (c) added to the output voltage V_o
 - (d) lumped with R_1
 - (e) lumped with $R_2 \checkmark \checkmark$
- 3. Referring to Figure (1), if $V_o = 2$ V and $R_1 = R_2 = 7.5$ K Ω , then the supply voltage V is _____ volts
 - (a) 7.5
 - (b) 7.5/2
 - (c) 4 ✓✓
 - (d) 2
 - (e) 1

- 4. Referring to Figure (1), if $V_o = 2$ V and $R_1 = R_2 = 1$ K Ω , then the current through R_1 is _____ amps
 - (a) 0
 - (b) 0.5
 - (c) $0.5 \ge 10^{-3}$
 - (d) $1x \ 10^{-3}$
 - (e) $2 \ge 10^{-3}$ \checkmark
- 5. Referring to Figure (1), if V = 12 V and $R_1 = 5$ K Ω and $R_2 = 15$ K Ω , then the output voltage V_o is ______ volts
 - (a) 12
 - (b) 8
 - (c) 4
 - (d) 3 √√
 - (e) 1
- 6. If the output from Figure (1) is to be taken to a 12 bit datalogger with Full Scale Range ± 5 volts, then the smallest detectable change in output voltage δV_o is _____ volts
 - (a) $1.22 \ge 10^{-3}$ (b) $2.44 \ge 10^{-3}$ $\checkmark \checkmark$
 - (c) 1
 - (d) 1.22
 - (e) 2.44
- 7. If in Figure (1) $R_2 = 10 \text{ K}\Omega$ but the current through R_2 is zero, then
 - (a) $V_o = V$
 - (b) $R_1 = \infty$
 - (c) $V_o = 0$
 - (d) $R_1 = 0$
 - (e) both (a) and (b) are true $\checkmark \checkmark$

- 8. If in Figure (2) $\tau = RC = 10^{-3}$ sec, then the half-power frequency f_o is
 - (a) 1000 Hz
 - (b) 1000 KHz
 - (c) 159 Hz ✓✓
 - (d) 159 KHz
 - (e) none of the above
- 9. If the frequency of the input sine wave in Figure (2) is $f >> f_o$ then the output amplitude V_o is
 - (a) V_s
 - (b) $V_s / \sqrt{2}$
 - (c) 1
 - (d) 1/2
 - (e) $\approx 0 \quad \checkmark \checkmark$
- 10. If the frequency of the input sine wave in Figure (2) is $f \equiv f_o$ then the output amplitude V_o is
 - (a) V_s
 - (b) $V_s/2$
 - (c) $V_s/\sqrt{2}$ $\checkmark \checkmark$
 - (d) 1/2
 - (e) ≈ 0

11. With reference to Figure (3), the condition that $\frac{R_1}{R_1+R_2} = \frac{R_3}{R_3+R_4}$ has the result that

- (a) the bridge is in balance
- (b) $V^{-} = V^{+}$
- (c) the error voltage vanishes
- (d) $R_1 R_4 = R_2 R_3$
- (e) all of the above $\checkmark \checkmark$

- 12. Suppose a data-logger displays a number N representing the voltage $V^+ V^-$ across its two input terminals, and that it can be assumed that the logger is "linear," ie., that $N = \alpha(V^+ - V^-) + \beta$. Furthermore, suppose the Full Scale Range (FSR) of the logger is $FSR = \pm 10$ volts. If we measure a reading N^+ when $V^+ - V^- = 10.0$ volts, and a reading N^- when $V^+ - V^- = -10.0$ volts, then the quantity $(N^+ - N^-)/20.0$ is
 - (a) the "offset" of the logger, β
 - (b) zero
 - (c) variable
 - (d) the sensitivity, $\alpha \checkmark \checkmark$
 - (e) none of the above
- 13. Consideration of the energy balance of an ordinary (and dry) thermometer leads to the conclusion that the "system output", i.e. the thermometer temperature T, responds to *several* environmental inputs, including air temperature T_a , air motion (eg. wind speed U), and the radiation environment as characterized by incoming solar radiation $(K \downarrow)$, etc. Thus in general the measured temperature $T = T(T_a, U, K \downarrow, ...)$. However a steady-state response to T_a alone, i.e. a response $T = T(T_a)$ at steady state, is assured
 - (a) since this is a first-order, linear system
 - (b) only if the radiation exchange term Q^* can be eliminated $\checkmark \checkmark$
 - (c) only if the time constant is short
 - (d) only if the time constant is long
 - (e) only if the thermometer s held in still air (U = 0)
- 14. Which of the following does not apply to the thermocouple
 - (a) floating voltage source
 - (b) internal resistance $R_s = 0$ $\checkmark \checkmark$
 - (c) responds *linearly* to temperature *difference*
 - (d) difficult to measure, microvolt (μV) -level signal
 - (e) sensitivity N (units, $\mu V K^{-1}$) known as the "Seebeck coefficient"
- 15. A "floating differential voltage receiver" has two inputs labelled V^+, V^- . Which of the following statements is untrue
 - (a) the resistance from either terminal to powerline-ground is infinite
 - (b) the resistances from the terminals to receiver common are large and equal
 - (c) the resistance from one terminal to the other is small (ideally, zero) $\checkmark \checkmark$
 - (d) the resistance from one terminal to the other is large (ideally, infinite)
 - (e) the common mode voltage relative to the receiver common is $(V^+ + V^-)/2$, ie. half the sum of the voltages applied at the terminals

- 16. If a potential drop V occurs across a resistance R, such that a current i flows, then the rate of power dissipation in the resistor (P) is
 - (a) iR [volts]
 - (b) V^2/R [Joules]
 - (c) $i^2 R$ [Watts]
 - (d) V^2/R [Watts]
 - (e) both (c) and (d) are correct $\checkmark \checkmark$
- 17. A lowpass filter has frequency-dependent power gain G(f). If the input to this filter is a sinusoidal signal $x(t) = A_{in} \sin(2\pi f t)$, the output from the filter will be:
 - (a) sinusoidal, but with the frequency doubled
 - (b) sinusoidal, but with the frequency halved
 - (c) sinusoidal, with the infinitely high frequency
 - (d) sinusoidal, with the infinitely low frequency
 - (e) sinusoidal, with the same frequency, and with amplitude $\sqrt{G}A_{in}$ $\checkmark \checkmark$
- 18. A tank, of volume D^3 , is kept in a well-stirred condition by a powerful fan, and initially contains a pure gas "A." At t = 0 it begins to be flushed by an inflow (volumetric flow rate $Q \text{ [m}^3 \text{ s}^{-1}]$) of pure gas "B," that displaces (at equal rate) mixed gas through an outlet. The transition of the tank's contents from "pure A" to "pure B" takes place with time constant
 - (a) (A B)/Q
 - (b) A B
 - (c) $D^3/Q \checkmark \checkmark$
 - (d) Q/D^{3}
 - (e) $A BD^3/Q$
- 19. Given two identical thermistors R_{1T} , R_{2T} and two identical control resistors R_{1c} , R_{2c} , a differential temperature sensor could be constructed by placing _____ in the full bridge shown in Figure (4).
 - (a) one thermistor in each of slots 1,2
 - (b) one thermistor in each of slots 3,4
 - (c) one thermistor in each of slots 1,3
 - (d) one thermistor in each of slots 2,4
 - (e) both (c) and (d) would work $\checkmark \checkmark$

20. If the governing equation for a ψ -sensor is an o.d.e. of form

$$\frac{d\psi}{dt} = \frac{\psi_0 - \psi}{\tau} \tag{1}$$

where t is time and τ is a property of the sensor, then we may say

- (a) the sensor is a linear device
- (b) the sensor is a first-order system
- (c) the sensor has time constant τ
- (d) $\psi_0(t)$ is the input and $\psi(t)$ the response of the sensor
- (e) all of the above $\checkmark \checkmark$

Short Answer (10 %)

Answer any **two** questions from this section. Give diagrams where appropriate to clarify your working, which should be shown. Justify any assumptions or simplifications you make.

1. Suppose a cyclist is riding at $U = 5 \text{ m s}^{-1}$ on a calm morning when the air temperature is $T_a = 2^{\circ}$ C. S/he has forgotten to wear gloves, and his/her hands are very cold due to convective heat loss. Treating the hand as a sphere of diameter d = 8 cm, and assuming forced convection and that the skin surface temperature $T_s = 10^{\circ}$ C, compute the rate of loss of heat (J s⁻¹) from each hand. Compute the density ρ using the ideal gas law, assuming the pressure P = 100 kPa.

Noting that core body temperature $T_c = 37^{\circ}$ C, draw a heat transfer "circuit" (for which driving forces are temperature differences and heat fluxes are moderated by transfer resistances) that could serve as a model for an assessment of how reasonable is the assumption that the outer surface of the hand has temperature $T_s = 10^{\circ}$ C.

- 2. Draw a tidy and complete circuit schematic representing a Wheatstone bridge (resistors R_1, R_2, R_3, R_4), that is driven by a grounded voltage source (no-load voltage V_s , internal resistance R_s), and whose error voltage ΔV is monitored by a balanced (ie. differential), grounded receiver (input resistances to ground R_{in}).
- 3. Using a diagram composed of the usual circuit symbols, explain the procedure by which, given a battery whose voltage is known to be exactly $V_s = 1.35$ volts and access to whatever tools and hookup wire you wished, you would perform a 3-point calibration check of a datalogger having full scale range ± 5 volts (ie. determine the data-logger readings corresponding to 3 known voltages). You may neglect the internal resistance of the battery, since it will be negligible compared to the logger's input resistance.

Data:

• Voltage resolution δV of an n-bit recorder with full scale range $\pm N$ is

$$\delta V = \frac{2N}{2^n - 1} \tag{2}$$

• $P = \rho R T$

The ideal gas law. P [Pascals], pressure; ρ , $[kg \ m^{-3}]$ the density; T [Kelvin], the temperature; and $R = 287 \quad [J \ kg^{-1} \ K^{-1}]$, the specific gas constant for air).

- Kinematic viscosity of air: $\nu \approx 1.5 \ge 10^{-5} [m^2 s^{-1}]$
- Thermal diffusivity¹ of air: $\kappa \equiv D_H \approx 2.1 \ge 10^{-5} [m^2 s^{-1}]$
- Specific heat capacity of air at constant pressure: $c_p \approx 1000 \left[J \ kg^{-1} K^{-1}\right]$

•
$$C \frac{dT}{dt} = A \left(Q^* + Q_H + Q_E \right) + P$$

Energy balance for a thermometer having bulk heat capacity C and surface area AThe Q's are (left-to-right) the net radiative, sensible, and latent heat flux densities (W m⁻²), and P is (any) internal heating.

•
$$\frac{dV_o}{dt} = \frac{V_s(t) - V_o}{\tau}$$

Differential equation giving the relationship between the output $V_o(t)$ from a lowpass RC filter (time constant $\tau = RC$) and the input $V_s(t)$. The particular case of the "step response" corresponds to the specification: at t = 0, $V_o = V_s = 0$, while for t > 0, $V_s = \text{constant}$.

•
$$y(t) = Y_2 + (Y_1 - Y_2) \exp\left(-\frac{t}{\tau}\right)$$

Response of a 1st order (RC lowpass type) system to step $Y_1 \to Y_2$ in input.

• $Q_H = \rho \ c_p \ \frac{T_1 - T_2}{r_H}$

Ohm's law model for sensible heat exchange.

• $N_u = 2 + 0.54 R_e^{0.5} (R_e \le 300), N_u = 0.34 R_e^{0.6} (50 \le R_e \le 1.5 \text{x} 10^5)$

Nusselt number for a sphere in air (forced convection).

•
$$r_H = \frac{d}{D_H N_u} \left[s \ m^{-1} \right]$$

Resistance r_H for heat transfer.

• $G(f) = \left(\frac{A_o}{A_s}\right)^2 = \frac{1}{1 + (f/f_0)^2}$

"Power gain" (ie. ratio of square of output amplitude A_o to square of input amplitude A_s) of an RC lowpass filter having half-power frequency $f_0 = \frac{1}{2\pi RC}$.

¹Symbols κ, D_H are both used for this quantity.

Figure 1: For this circuit it is implicit that no current is drawn from the output terminal. The output voltage $V_o = V \frac{R_1}{R_1 + R_2}$

Figure 2: RC circuit driven by a sine wave generator (amplitude V_s), where again, it is implicit that no current is drawn from the output terminal. The amplitude V_o at the output terminal can be computed from $V_o^2 = V_s^2 / [1 + (f/f_o)^2]$ where $f_o = \frac{1}{2\pi RC}$ is the "half-power frequency".

Figure 3: Error detection circuit. The "error voltage" is $V^+ - V^-$.

Figure 4: Template for construction of a differential temperature sensor.