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Abstract 
The experiments with numerical forecasting using the barotropic model have been continued 

and a number of 24, 48 and 72 hour forecasts are presented. The initial data for these 
forecasts covered an area of about 9,000 by 12,000 kni. The results indicate that the bound- 
ary influences have been reduced to be unimportant in the centre of the area in the 24-hour 
forecasts but they may still cause errors in the 7z-hour forecasts. In view of the approximations 
made very good 7z-hour forecasts have been obtained in some cases. The most successful one 
gave a correlation of 0.87 and a relative error of the forecast height changes of 0.58. Most 
of these extended forecasts should be of definite value in forecasting the weather. Large 
errors are, however, still obtained in some cases. The neglection of baroclinic process is one 
of the reasons for these errors but it is quite obvious that the largest errors are of a different 
nature. Experiments are at present conducted to find the sources of these errors. One line of 
this research is a general re-analysis of the assumptions made in deriving the barotropic model 
which is presented in the latter part of this paper. A number of improvements are suggested 
for further tests. 

I. Introduction 

In a recent report (STAFFMEMBERS, INSTITUTE 
OF METEOROLOGY, UNIVERSITY OF STOCKHOLM, 
1954, hereafter denoted by 11) a number of 
24-hour forecasts with the aid of the barotropic 
model were presented. In spite of the compara- 
tively successful results it was concluded that 
several improvements in the computational 
procedure were desirable. In particular the 
assumptions on the boundaries of the forecast 
area affected the forecasts seriously in some 
cases. It was not possible to use a larger area than 
about 5,700 x 5,700 km with a gridsize of 300 
km, because of the limited capacity of the 
Swedish Computer BESK at that time. Nor 
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was it possible to extend the forecasts beyond 
24 hours for the same reason. Since then 
a magnetic drum capable of holding 4,096 40 
binary digit words has been added to the 
machine, which has made it possible to extend 
the forecasts to cover an area more than three 
times as large as the one previously used and 
also accordingly increase the forecast period. 
A number of such forecasts have now been 
made and the results of those are presented here. 

The first series of such forecasts over two 
and three days immediately made it clear that 
it was highly desirable to make such tests 
over a longer period both from the point of 
view of using them in daily weather fore- 
casting routine as well as for the analysis of 
different kinds of errors. Such an extensive 
testing program therefore was started by the 
Weather Service of the Swedish Air Force. 
Since December I ,  1954 more or less regular 
24,48 and 72-hour forecasts are made. As a com- 
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parison the Swedish Weather Bureau prepares 
forecasts with conventional extrapolation meth- 
ods. Some of the preliminary results of these 
forecasts are considered in the discussion here. 

By and large the results are very encouraging 
and even the forecasts over 72 hours ought to 
be useful in actual weather forecasting in most 
cases. In the centre of the forecast area the 
effects of the assumptions on the boundaries 
seem to be small. However, many systematic 
errors still appear as can be seen from the 
presentation below. In a few cases these errors 
are obviously due to the fact that we disregard 
baroclinic effects completely, but in most cases 
there seem to be other reasons for the disagree- 
ment between the computed and the real 
development. Among other things it therefore 
seems very desirable to reconsider the ap roxi- 
mations within the barotropic mode7 and 
analyze the effects of them. Such an analysis 
is attempted in the latter part of this paper. 

FJ0RTOFT (1952) has developed a graphical 
method for solving the barotropic vorticity 
equation. Since this method is very simple and 
can be used in the daily forecasting routine in 
any weather service without having an elec- 
tronic computer at disposal it is of very definite 
interest to compare the results obtained in such 
a way with the results of computations on a 
machine. Such a comparative study has been 
made by 0. Haug and is also presented here. 
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sible by grants from the Knut and Alice Wal- 
lenberg Foundation and the Swedish National 
Science Research Council and by the support 
from the Office of Naval Research, USA. 
The continuation has been supported by the 
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tical work of carrying through the forecasting 
program discussed here was done by a team 
consisting of H. Bedient, USA; P. Bergthors- 
son, Iceland; G. Dahlquist, Sweden; B. Doos, 
Sweden; 0. Haug, Norway, A. Jonasson, 
Sweden, and the author. A number of discus- 
sions with Drs. P. Welander and G. Dahlquist 
have contributed to the general discussion 
in the latter part of the paper. All these con- 
tributions are gratefully acknowledged. Finally 
I am greatly indebted to Professor C.-G. 
Rossby for his neverfailing interest in this work 
and for many stimulating discussions. 
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2. Methods of computations and truncation 

In the attempts to use the barotropic model 
over a larger area and over periods of two or 
three days about the same procedure at first 
has been used as given by CHARNEY and 
PHILLIPS (1953) and which also was used in 
II. A few minor changes have been made: 

The criterion for computational stability 
puts an upper limit on the length of the time- 
steps, whch is about one hour if the gridsize 
is 300 km. The reason for this is that only 
the neighbouring gridpoints are used when 
computing the change in time at a point with 
the aid of finite differences in space. It is quite 
obvious that the time derivative thus obtained 
only can be representative for a time period 
which is equal to or less than the time it takes 
for influences to travel the distance between 
these neighbouring grid points and the point 
itself. To be able to take longer time steps 
it is necessary to use a method by which in- 
fluences from points at larger distances automa- 
tically are included if necessary. The following 
method has been tried: In order to compute 
the change of vorticity at a certain point, 
(xo, yo) from the time t to t + A t ,  we try to find 
the location (x’, y’) of a particle at time c, 
which at time t + A t  will be located at 
(xo, yo). The difference between the vorticities 
in the two points (x’, y’) and (xo, yo) is then 
equal to the vorticity change in (xo, yo) over 
the time interval At .  The size of A t  is here 
limited by the accuracy with which the co- 
ordinates (x‘, y’) can be determined. By using 
second differences in the interpolation schemes 
it has been possible to use time steps of 3 
hours in a field where the maximum velocity 
of the flow was 60 misec. It was believed that 
t h s  increase of the time step would shorten 
the total time for a forecast but the computa- 
tional method itself is considerably more 
complicated than a Jacobian computation. 
Furthermore the points close to the boundary 
require a special handling which still more 
increases the length of the computations. No 
gain in time was thus obtained with this 
method. Instead the following scheme was 
used in the final computations (devised by 
G. Dahlquist). 

The basis of the method for the integration 
of the equations 

errors 
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m2 r=-6+f f 

is the trapezoidal rule 

and the usual finite difference approximation 

Here p etc. denotes the value of 5 at the 
time z * A t ,  the bar denotes the average of 
Q in the four neighbouring lattice-points and 
A s  is the mesh-width (which is equal to 300 
km at 50' latitude). Other notations as in (11). 
Since p occurs implicitly on the right hand 
side of (2.4) the following moddied scheme 
has actually been used. 

The height values 4' are given initially. 
Then 6" is computed from (2.5) and q' is 
obtained from (2.2). 

We get 

62 = 6" + ; A t .J (qO, +O) 

where the subscript a denotes that the value is 
considered as a first approximation to the 
quantity in question. Then q,Yz is computed 
from (2.2), and +fi is obtained from 6,Yz through 
the solution of Poisson's difference equation 
(2.3). Here we utilize Liebmann's method of 
iteration taking @ as the first ap roximation. 

z = I, 2, 3, . . . can proceed step by step in 
the following manner. Compute 

After this, the computation o P the field at 

6; = p - 1 + A t .J (7: - ' i s ,  Q - '/n) 

(6; + 5'- 1) I 

2 
5' - ' i. = - 

Then q T - %  is obtained from (2.2), and the 
final value of 5' is computed from 

p = p - 1  +&.](r"-'l*, Q-lls) 

For the use in the next step we also extrapolate 
5" !4 = 25' - p-112 

a 
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and compute the corresponding q z + K .  Then 
Q is solved from (2.3), using the linear extra- 
polation 2 F - K  - 6-1 as a first approximation. 
Finally we extrapolate 

+ r + ' / . = Q + ;  I ( @ - @ - I )  

and are ready for the next time step. 
In the Liebmann process for solving (2.3) an 

over-relaxation factor of 1.2 was used. The 
solution was accepted when I 1/4   AS)^ 5' - 
- (p - F)  1 nowhere exceeded 0.3 m. As an 
average four or five iterations were needed. 
It can be shown that the Courant-Friedrich- 
Lewy criterion for computational stability is 
changed somewhat for a procedure as outlined 
above and the largest permissble value of A t  
increases with 4-50 %. In most of the fore- 
casts made here a time step of I 1/2 hour was 
used. The total time for a 24 hour forecast using 
1,240 grid points was around 15 minutes. 

It is quite obvious from these computations 
that 72 hours or somewhat more represents 
the limit with the method used. In most cases 
quite large oscillations in the vorticity field 
appear at this time, as can also be noticed in the 
height field. This is probably not due to 
computational instability in the sense of Cou- 
rant-Friedrich-Lewy. A few forecasts were 
made using different time steps and no appreci- 
able difference was obtained if the modified 
stability criterion mentioned above was satis- 
fied. Instead these small scale disturbances are 
probably gradually activated through non- 
linear interactions, which is a normal feature 
of any such nonlinear process. The behaviour 
of such short waves is very badly represented 
by the finite difference approximations used. 
It therefore seems necessay to introduce 
systematic smoothing of the height field (or 
vorticity field) when extending the forecasts 
beyond about 48 hours. Such a procedure will 
be tried during the testing now in progess. 

3. Forecasting with the barotropic model 

The results of the forecasts are summarized 
in table I, r is the correlation coefficient 
between observed and computed changes, a, 
and a, are the root mean squares of the ob- 
served and computed changes, and e is the 
mean error. The verification as presented here 

over 24, 48 and 72 hours 
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24/11-51 03 
25/11-51 15 
27/11-51 03 

I / I  -54 03 
21/9 -54 03 
25/9 -54 03 
26/9 -54 03 
2719 -54 03 
28/9 -54 03 
29/9 -54 03 
3019 -54 03 

Fig. I .  Location of the grid 
used in the forecasts. The 
computations were made 
over the area limited by the 
inner solid line. At the initial 
time data was supplied also 
at the points outside to get 
an accurate value of the 
vorticity on the boundary. 
The verification was done 
over the area inside the 
dashed line and also over the 
land area indicated by the 
dotted line in the eastern part 

of this area. 

0.86 113 94 60 0.53 0.91 I87 174 78 0.42 - - - - - - - - - - 
0.94 131 123 46 0.35 0.90 174 186 78 0.45 0.68 115  161 127 1.10 - - - - - 
0.87 117 124 60 0.52 0.77 140 183 109 0.78 - - - - - - - - - - 
0.78 68 60 53 0.79 0.63 I Z I  118 105 0.87 - - - - - - - - - - 
0.86 65 47 34 0.52 0.84 89 b3 48 0.58 0.63 90 95 82 0.91 - - - - - 
0.91 87 81 40 0.46 0.84 I I O  121 84 0.76 - - - - - - - - - - 
0.81 61 57 36 0.60 0.78 78 93 67 0.86 0.71 93 128 96 1.03 - - - - - 
0.60 46 37 40 0.85 0.74 81 64 58 0.72 0.63 89 92 87 0.98 0.70 81 56 84 1.04 
0.76 67 67 47 0.70 0.74 81 83 60 0.74 0.58 76 49 62 0.82 0.74 81 58 59 0.73 
0.93 71 71 28 0.39 0.84 94 85 55 0.59 0.62 136 115 113 0.83 0.80 94 46 65 0.69 
0.89 78 65 37 0.48 0.86 133 103 66 0.49 0.72 169 142 114 0.67 0.57 133 147 125 0 9 4  

was made over a comparatively small area 
over western Europe as indicated by the dotted 
line in fig. I. The corresponding values have 
also been computed for a larger area indicated 
by the dashed lines in fig. I. The average 
values of this latter comparison are given at 
the bottom of the table. The statistical quan- 

ticies given in table I do not give a complete 
picture of the success or failure of the forecasts, 
but will still be useful for this discussion. To  
judge a forecast completely a careful inspection 
of the change maps in relation to the flow 
pattern is necessary. One such example will 
be given in the next section. 

I/IO-54 03 0.92 

Mean 0.85 

2/10-54 0 3  I 0.92 

Verification 
over larger 
area 0.75 

Table I 

91 55 40 0.51 0.88 140 129 65 0.46 0.85 167 148 81 0.49 0.77 140 116 124 0.89 

83 74 43 0.52 0.82 I Z I  119 72 0.59 0.70 120 119 95 0.79 0.74 I I Z  IOO 92  0.82 

81 87 33 0.41 0.92 143 1 2 1  62 0.43 0.87 146 I45 85 0.58 0.83 143 175 98 0.68 

85 74 56 0.66 0.71 116 119 91 0.78 0.58 121 134 123 1.02 

24h barotropic 4hh barotropic 72h barotropic 48h forecast: conven- 
forecast forecast tiona: methods 
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The following points should be mentioned 
specifically : 

I) On the whole the agreement between 
observed and computed changes was worse 
over the larger area than the one only covering 
parts of the European continent and adjacent 
ocean areas. In the western parts the influences 
from the boundaries may have been of some 
importance after 48 and 72 hours, but already 
in the 24-hour forecasts a significant difference 
shows up. Undoubtedly this is to some extent 
the result of the comparatively few radiosonde 
observations over the ocean. However, another 
effect is also important. Computing the average 
errors in the &hour forecast of the height 
changes we find that they had a maximum in 
the vicinity of New Foundland and Nova 
Scotia (average of 13 forecasts). The computed 
changes were here on an average 80-100 m 
too high. This means that the absolute vorticity 
in reality was larger in this region than was 
computed. Since the barotropic model assumes 
conservation of the absolute vorticity this result 
indicates that this region in reality is a source 
region of vorticity. This result is not surprising. 
From experience we know that most cyclones 
are formed along the American sea border 
where the baroclinicity of the atmosphere on an 
average is large. Furthermore the thermal 
contrast between the continents and the ocean 
is larger at the American east coast than at 
the European west coast. The results obtained 
indicate that baroclinic processes and non-adiabatic 
influences j o m  the surface of the earth are less 
important over the eastern Atlantic and western 
Europe than over the American east coast and 
western Atlantic for forecasting changes of the 500 
mbflow.  Of course this is not necessarily true 
in individual weather situations, but only 
expresses an average condition. 

2) The 48-hour forecasts compare well with 
the +-hour forecasts and also those for 72 
hours were in most cases of definite value. It 
is interesting to notice that in some cases the 
correlation coefficient was larger and the 
relative error E/U,  smaller for the 48 hour 
forecasts than for those over 24 hours. On 
September 27 this was partly a result of a 
deepening cyclone over the Baltic during the 
first 24-hour period, which moved out of the 
area during the following day. However, on 
November 24, 1951 it was not the result of 
such a development. Instead we see that ox 
Tellus VII (19SS), 1 

is considerably greater for 48 hours than for 
24 hours (as in all cases presented here). This 
means that the quasi-periodic changes caused 
by the large scale patterns in the atmosphere 
on an average have a half period which is 
larger than one day. In the changes over 24 
hours the large scale changes thus play a 
relatively less important role than those with 
shorter period since they have not yet reached 
their maximum intensity. However, the baro- 
tropic model is less applicable to systems of 
smaller scale and furthermore the finite dif- 
ference approximations become worse, which 
explains t h s  initial increase of the correlation 
coefficient. A series of n-hour forecasts would 
probably show consistently lower correlation 
coefficients than those here obtained for 24 
hours. 

3) It is to be expected that the small scale 
atmospheric systems are poorly described by 
the barotropic model and the finite difference 
method also introduces large errors in com- 
puting the changes of such systems. This is 
clearly seen from an inspection of the vorticity 
field. The amplitude of the vorticity is con- 
siderably larger in she small systems than in 
the larger ones, while still the latter are most 
important for determining the general flow. 
Even in the very best forecasts there are large 
differences between the observed and forecast 
vorticity fields. This fact speaks in favour of 
the introduction of a systematic smoothing in 
the course of the computations. 

4) The notion that the barotropic model 
describes large scale process in the atmosphere 
better than those of smaller scale seems not to 
be valid for the very largest systems. This is 
indicated by the fact that the correlation 
between computed and observed mean changes 
over the verlfication area in these 13 forecasts 
is somewhat smaller than the correlation of 
the changes at different points within the area. 

5 )  The results presented here for 24 hours 
are on an average better than those given in 
the previous report 11. Four synoptic situations 
have been treated both with the smaller area 
of initial data used in I1 and the larger one used 
here. For the three November cases in 1951 
the differences in the results are hardly signif- 
icant. Those made with the larger area seem 
to be slightly better. The forecast from January 
I, 1954 was previously a failure with a correla- 
tion of 0.17 and a mean error of 169 m. It 
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was quite obvious that the boundary assump- 
tions to a large extent were responsible for 
this result. The computations using the larger 
area resulted in an improvement to the values 
Y = 0.78, E = 53 m. The verification was not 
done over quite the same area but the values 
are still comparable. 

6) A study of the error maps shows that 
this field to some extent is associated with the 
existing flow pattern. A knowledge of the 
error field over one 24-hour period permits us 
to draw some conclusions concerning the 
errors during the following 24-hour period. In 
whatever wav these errors arise it should be 
possible to utilize the information they contain 
for improving the following forecast. 

7) The last eight forecasts (September 25- 
October 2) were made in cooperation with 
the Weather Service of the Swedish Air 
Force and used in their daily routine fore- 
casting. During the same period &hour 
forecasts were made by the Swedish Weather 
Bureau with conventional extrapolation meth- 
ods similar to those developed by SCHERHAG 
(1948). The results of those are also given in 
table I .  It should be remarked that no major 
baroclinic development occurred during this 
period which at least to some extent might 
have been caught by the conventional methods, 
but certainly not by the barotropic model. 
It is of course also conceivable that some other 
method of extrapolation may give better 
results than the one used here. For 24-hours 
the conventional methods seem to have given 
somewhat better results than the barotropic 
model (not shown in the table). However, for 
48 hours the barotropic model definitely was 
superior in these cases. 

8) Very large errors sometimes appear after 
about 48 hours. They are among other things 
characterized by the fact that the subtropic 
anticyclones are intensifying considerably as 
well as the polar cyclones resulting in a general 
intensification of the gradients. In a few cases 
absurd values are obtained for the geopotential 
field as for example the value of 6,160 m in 
the centre of the anticyclone over the Eastern 
United States in the 72 hour forecast from 
October 2 (fig. 5). In the same forecast one 
also finds quite a strong rise over most part of 
the large verification area towards the end of 
the forecast period. Thus the computed mean 
rise over this area from 24 to 72 hours was 

more than IOO m, a value never observed in 
reality over such large an area. 

It is quite clear that these large scale errors 
hardly can be the result of baroclinic develop- 
ments in the real atmosphere. On  the other 
hand the non-barotropic processes associated 
with the influences from the surface of the 
earth seem to be of some importance in fore- 
casts over 48 hours or more. However, cor- 
recting for this in a similar way as proposed 
by CLAPP (1953) still leaves large errors un- 
explained. 

Again we come back to the boundary 
assumptions. Keeping the vorticity at a fixed 
value on the boundary may cause large errors 
to build up gradually. Let us for example 
assume that a comparatively low value of the 
absolute vorticity is assigned to a portion of 
a southern boundary across whch inflow 
takes place. This value is then kept fixed in 
the course of the following computation. The 
flow north across the boundary turns anti- 
cyclonically to the right (northern hemi- 
sphere). Here gradually an anticyclone will 
form meaning an intensification of the south- 
erly flow to the west. Thus, a day later the 
vorticity carried in across the boundary is 
brought further to the north than on the 
previous day and also the anticyclone extends 
further to the north. At these higher latitudes 
the same small absolute vorticity coming from 
the boundary means a still more intense anti- 
cyclonic circulation because of the variation of 
the Coriolis parameter. In view of such effects 
it may in many cascs be necenary to place the 
boundaries in such a way that noJEow takesplace 
across them, if the jorecasts are to be extended 
beyond 48 hours or else modify the assumptions on 
the boundaries to exclude developments ofthis kind. 

It still does not seem likely that all major 
errors in the forecasts will be removed by 
corrections of this type. W e  notice for example 
in the 48 hour forecast from October 2, 
1954 (fig. 2) an anticyclogenesis over the sea 
between Greenland and northern Scandinavia, 
which did not occur in reality. This may be 
the result of the fact that the cyclonic vorticity 
in the cyclone to the east of the British Isles 
was over-estimated by the geostrophic ap- 
proximation, which caused a turning of the 
flow more sharply than actually occurred for 
example after 48 hours (fig. 4). This error in 
the evaluation of the vorticity essentially 

Tellus VII ( !955 ) ,  1 
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BESK ...... 
Fj. method . .  

Fig. 2.  500 mb contours on Oc- 
tober 2, 0300 GMT 1954. The 
heights are given in decameters. 

0 . 5 8  I 0.77 I 0.64 
0.70 0 .60  0 .60  

depends upon the curvature of the flow and 
is small in the case of straight flow. Therefore, 
with the assumption of conservation of the 
absolute vorticity the geostropkic vorticity is 
not conserved for a particle at one time being 
in a region of strong curvature at another 
time in more or less straight flow. 

The series of questions raised above makes 
it clear that a reanalysis of the barotropic 
model is highly desirable. We shall return to 
this problem in section 5 .  

Forecasts with Fj~rtofis graphical method 
by 0. HAUG 

For the period 25 September to 2 October 
48 hour forecasts have been made by means of 
Fjortofts method in order to compare the re- 
sults thus obtained with those obtained numer- 
ically with the aid of BESK. For details of the 
method we refer to the paper by FJ~RTOFT 
(1952). The computations were here done using 
a modified formula, which also takes into 
consideration the changes in the mean field, 
while the mean of the mean field is kept fixed 
in time. This method will be discussed by 
Fjortoft in a forth-coming paper. The gridsize 
used for constructing the mean map was 600 
km at 50' N and for constructing the mean of 
the mean 1,200 km. 
Tellus VII (19SS). 1 

3-50 I7 3 4  

The prognoses from the first four days were 
about as successful as those made with the 
machine. The correlation coefficients for the 
observed and com uted chan es evaluated over 

the following table. 
the large area in g 'cated in B ig. I are given in 

Table 2 

28 - 30 
sept. 

0 . 8 3  
0.71 

During the later period there was a very 
pronounced increase of the amplitude of the 
large scale wave pattern over the Eastern At- 
lantic and Western Europe. The forecasts by 
BESK became better (see table I) and appar- 
ently the development was to a considerable 
extent barotropic. The forecasts with the graph- 
ical method, on the other hand, were not as 
good, which in particular was true regarding 
the forecast of the amplitude of the waves. 

The main source of errors in the forecasts 
by Fjortoft's method seem to be the actual 
variations of the mean of the mean field, which 
is supposed to be constant during the forecast 
interval of 48 hours. During the first part of 
the period only small changes in the mean of 
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BESK . . . . . .  
Fj. method . .  

B E R T  

- 

9 %  1 20% 1 
7 %  1 26% 

23 yo 7 7 %  18% 33 YO 

B O L I N  

the mean field occurred, while it changed con- 
siderably during the later part. There are, how- 
ever, reasons to believe that these pronounced 
changes were quite extreme. Such changes do 
not occur very often, but they usually represent 
major changes of the weather in the area con- 
cerned and are extremely important for the 
weather forecasting. 

The displacement of troughs and ridges were 
in most cases fairly well forecast by Fjerrtoft's 
method. The error in displacement of the 
trough and ridge, moving from the Atlantic 
in towards Europe during the later part of the 
period are given in the following table 3 as the 
percentage of the time displacement. The 
figures represent the mean of the errors of 
disdacement at the latitude circles 60" and 
50' N. 

Table 3 

Percentage error in 
prognosis of displacement of trough. 

It may be of some interest to see that the 
trough displacement was considerably better 
forecast by BESK, while the motion of the 
ridge was very well forecast using graphical 
methods, even better than with the machine. 

It should finally be added that it takes 4-5 
hours for one man to prepare a 48-hours fore- 
cast with Fjerrtoft's method. The time can be 
reduced considerably if two persons work 
simultaneously. 

4. Barotropic forecasts from October 2, 1954, 
03 GMT 

A correlation coefficient or mean error 
certainly gives a very poor description of the 
success or failure of a forecast. We shall there- 
fore in some detail discuss some of the fore- 
casts made in this series and have chosen those 
based on the map of October 2, 1954,03 GMT. 
It was the most successful forecast over north- 

western Europe for 48 and 72 hours and it is 
interesting in view of the prevailing synoptic 
situation. On the other hand the results for the 
western parts of the verification area (western 
Atlantic) were worse than on the average (fig. 

The initial map was characterized by two 
well defined troughs, one along 30'E, the 
other one at 25-3oOW. The ridge between 
these troughs had been intensifying during the 
last 24 hours. Further west another trough was 
situated on the lee side of the Rocky Mountains. 
Off the American west coast a very intense 
blocking ridge had remained stationary for 
some days (not shown on the map). During 
the following 48 hours the ridge over the 
Bristish Isles intensified and moved east and 
the trough further west also advanced quite 
rapidly eastwards. As is seen from fig. 4 the 
48 hour forecast of the positions of the trough 
and ridge was almost perfect. The very 
characteristic changes in the shape of the ridge 
in that the distance between the two troughs 
on both sides became smaller is clearly indicated 
in the forecast. The westerly current from the 
Atlantic pushing westward towards central 
Europe had reached the zero meridian on 
October 4 in the morning. In the forecast it 
had advanced somewhat further and a westerly 
current was gradually being generated over 
central Europe. During the following 24-hour 
period this development continued and the 
weather was radically changed in that humid 
maritime air replaced the dry polar air that 
had earlier been brought in from the north 
over most parts of central Europe. It is very 
interesting indeed that such a development of 
the decline of the ridge and the intensification 
of the anticyclone over northern Finland and 
Russia in principle could be forecast three 
days in advance. It is also interesting to notice 
that the correlation between the observed 
changes between October 4 and 5 and those 
computed for the same 24-hour period using 
the initial map two days earlier was 0.65. 

In other regions the errors in the forecasts 
were larger. Over the Norwegian Sea the 
current never turned back towards NNW as 
was forecast. As mentioned in the previous 
section this possibly may be explained as a 
result of an overestimation of the cyclonic 
vorticity in the trough at 30' W on October 2. 
The depth of the centre may also have been 

2-5). 
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Fig. 3 a. 500 mb contours on 
October 3,  0300 GMT, 1954. 

Fig. 3 b. a4-hour forecast of 500 
mb contour field from October 2, 
0300 GMT to October 3,  0300, 

1954. 

erroneously analyzed as no observations existed 
close to it. 

To get an idea of the importance of the 
geographically fixed errors the following com- 

utation was carried through. The 48-hour 
Porecast was corrected with the aid of the mean 
&hour errors found from the other 12 fore- 
casts given in table I .  In this way the correla- 
Tellur VII (1955). 1 

tion coefficient over the smaller verification 
area was changed from 0.92 to 0.93 and the 
mean error from 62 to 59 m. The improve- 
ment is hardly significant. Probably a more 
pronounced improvement in general would 
be obtained at the east coast of America. 
Furthermore it would of course be better to 
introduce corrections of t h s  type in the course 
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Fig. 4a .  $00 mb contours on 
October 4. 0300 GMT, 1954. 

Fig. 4 b. &hour forecast of 500 
mb contour field from October 2, 
0300 GMT to October 4. 0300 

GMT, 1954. 

of the computations, since such errors cause 
new errors if not continuously removed. 

5. The barotropic model 
There are a number of reasons, why the 

barotropic, two-dimensional model was chosen 
for the first attempts in numerical forecasting. 
The quasi-two-dimensional character of the 

motion of the atmosphere had been stressed 
repeatedly by Rossby and his collaborators 
(e. g. ROSSBY 1939). The transformation of 
potential energy into kinetic energy only 
amounts to some 10-20 % of the total kinetic 
energy of the atmosphere per day and to a first 
approximation the changes of atmospheric 
flow-pattern represent a redistribution of 

Tellus VII (1955). 1 
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. 5 a. 500 mb contours 
October 5 ,  0300 GMT, 

1954. 

Fig. 5 b. 72-hour forecast of 500 mb 
contour field from October 2, 0300 
GMT to October 5 ,  0300 GMT, 1954. 

kinetic energy. Above all it is important to 
start from the simplest possible idea about the 
dynamics of the atmosphere and gradually 
proceed to more complicated models. In doing 
so we can get a better understanding of the 
relative importance of various processes in the 
atmosphere. In that sense the barotropic model 
offers an excellent starting point. 
Tellur VII (1953). 1 

There are several advantages in using an 
internally consistent model of the atmosphere 
in such an approach. It is easier to visualize 
the behaviour of the field of motion and to 
clarify the importance of various physical 
factors. In starting from the general equations 
in three dimensions and attempting to derive 
a set of forecast-equations by successive a p  
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proximations inconsistencies are easily intro- 
duced, the importance of which is difficult 
to determine. 

For this reason one has chosen a homo- 
geneous and incompressible fluid of a finite 
depth. We shall study it both assuming a fixed 
upper surface of this fluid (i.e. put div v = 0) 
as well as a free surface. The following three 
equations describe the motion of the fluid with 
a free surface. 

du 
- f v =  - g z  

- + f u =  -g- 
dt JY 
dv 

where u and v are the components along the 
x- and y-axes respectively of the horizontal 
wind v, f is the Coriolis parameter, D denotes 
the depth of the fluid and djdt only contains 
the horizontal convective accelerations. We 
have here made use of the hydrostatic equation. 
From these equations the well-known vorticity 
equation is derived 

where ( denotes the relative vorticity. In case 
of a fixed top on the fluid the right side is 
equal to zero and this simplified form of (5.2) 
is the basis of all barotropic forecasts published 
up to the present time. 

Any results derived for such a model must 
be “translated” in terms of the real atmosphere. 
Thus CHARNEY (1949) has introduced the 
concept of the equivalent barotropic level of 
the atmos here and justified the use of data 
at 500 m% in forecasting with (5.2). In (a) 
we shall give some further considerations on 
this problem starting from the general three- 
dimensional equations. 

The geostrophic approximation has been of 
great importance for our possibilities of utili- 
zing eq. (5.2) for forecasting purposes. In an 
other article in this issue of Tellus Charney 
discusses the more general equation relating 
wind and pressure in the nondivergent case. 
(CHARNEY 195s). S i d a r  considerations have 
been made by the author and a detailed dis- 

cussion of this generalization of the geostrophic 
relation will be given in (b). 

In section (c) we shall discuss the importance 
of removing the restriction of zero divergence. 
In doing so the balance equation discussed in 
(b) becomes more complicated and some 
modifications of it are presented in (a). 

It is hoped that this detailed discussion of 
the barotropic model shall serve the two-fold 
purpose of improving the present procedure in 
applying the barotropic model and form a 
starting-point for a discussion of more compli- 
cated models of the atmosphere. 

a. The equivalent barotropic atmosphere 
There exist marked differences between the 

real atmosphere and the barotropic non- 
divergent model. Thus the wind increases 
from relatively small values at the surface of 
the earth to a maximum at the tropopause 
level. The vertical velocity in reality seems to 
have a maximum somewhere in the middle of 
the atmosphere and is equal to zero at the 
surface of the earth and also in the vicinity of 
the tropopause, implying o posite sign ‘of the 
divergence in the lower ancfupper part of the 
troposphere. A number of approximations 
therefore are necessary to arrive at the simplified 
equation used in the present computations with 
the barotropic model. The question arises if 
some of these simpllfications can be removed 
without having to introduce several parameters. 
It is clear that some kind of multiple pa- 
rameter model ultimately will be used in 
numerical forecasting but we shall here see if 
it is possible to make any appreciable improve- 
ments withm the framework of the simple 
barotropic model. Let us for this purpose turn 
back to the complete hydrodynamic equations 
in three dimensions. 

For this discussion we shall make use of the 
hydrostatic relation 

(5.3) 

with the aid of which we introduce p as our 
vertical coordinate. The two horizontal com- 
ponents of the equation of motion are com- 
bined into the vorticity equation and the diver- 
gence equation. At this stage we shall only 
make use of the first one. The divergence 
equation will be used in 5 b and 5 d to relate 

Tellus VII (19SS), 1 
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the pressure and wind fields to each other. 
The complete vorticity equation reads 

ac at. aw - 4 - V .  v(C+f)= - 0 - +  (f+[)-+ 
at aP aP 

where w = d p / d t  and where we have made 
use of the continuity e uation. At this stage 

tions. 

fairly well represented by 

CHARNEY (1949) makes a t e following assump- 

I) The variation of the wind with height is 

where A(p) is an empirical function for which 
Po 

I f i ( p ) d p =  I 
Po 

0 - 
v is the mean velocity averaged over the 
vertical. 

2) 5 < fand therefore the vertical advection 
of vorticity, (w - aC/Jp) ,  and c * &o/Jp are 
small terms in comparison with f. aw/Jp. 

3) The turning of the vortex tubes expressed 
by (aw/ay * &lap - i?w/ax * av/ap) can be 
neglected. 

By integrating over the vertical Charney 
shows that 

a<* 
-++*.v(r*+f)=o at (5.7) 

Here 5” and v* represent the vorticity and 
velocity at a level p* where 

It turns out that p* is close to 500 mb on an 
average. This is the justification for using the 
simple vorticity equation valid for an incom- 
pressible and homogeneous atmosphere for 
forecasting the changes at 500 mb in the real 
atmoshpere. 

However, none of these three assumptions 
are valid in reality, as has been pointed out 
several times by other authors. The use of 
multiple-parameter models represent attempts 
to remove the restrictions introduced by these 
assumptions in particular the first one. We 
Tellus VII (1955). 1 

shall here only discuss the barotropic model and 
therefore the first assumption will be retained 
in spite of the fact that large errors are in- 
troduced in highly baroclinic fields. 

The second assumption introduces errors, 
which can easily be estimated in an atmosphere 
with the vertical distribution of the wind 
given by (5.5). Consider for example a region 
with a positive value of 5. Because of the 
general character of A ( p )  it follows that 
2 ( / 2 p  < 0. Hence, in case this is a region of 
upward motion w - a(/i?p averaged through the 
whole troposphere is a positive quantity. In 
such an area of upward motion the divergence 
(= - a w / a p )  is-positive at upper levels and 
negative at lower levels, but the integrated 
value over the vertical is close to zero. How- 
ever, if l is positive, it is larger at higher 
levels than close to the surface of the earth 
(ac/ap < 0) and the average of c .  aw/ap is 
therefore also different from zero. It is easily 
seen that these two terms give a contribution 
in the same direction. We shall here give a 
rough estimate of the importance of this effect. 
As will be seen from the following derivation 
the result depends on the assumption of the 
vertical distribution of the horizontal wind 
and the vertical velocity. It is difficult to see 
what the various assumptions will mean and 
only numerical forecasts using the final for- 
mula will answer this question. 

For simplicity we shall assume 

which gives v ( x ,  y, po) =o and v(x, y, p l )  = 
= 2V. p o  is the pressure at the surface of 
the earth and p 1  the pressure at the tropopause. 
Let us restrict the following considerations to 
the troposphere. (5.9) then describes average 
conditions quite well (BOLIN, 1953a). 

It has already been mentioned that the vertical 
velocity seems to have an extremum some- 
where in the middle of the troposphere. This 
is mainly a result of the existing vertical 
distribution of the wind. If it is accepted that 
the vertical variation of the wind can be 
described fairly well with the expression (5.9) 
the atmosphere must contain processes that try 
to maintain such a distribution. This means 
that aC/at in (5.4) also must be a function of 
p approximately represented by A ( p ) .  As- 
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suming for a moment that 5 .t fand (5.4) can 
be written 

am 
(5.10) 

25 - + v. v (5 +f) =f. - 
at JP 

It is then easy to show that w I must have a 

to have this equation satisfied at all levels 
between p = p o  and p = pl. For the case that 
w(po) = w(pl) = o one obtains 

maximum in the middle o 1 the troposphere 

- 
v . v s  

3 f  
w = ~ Ap(n3 - n2 - TC + I) (5.1 I) 

where 
7c= 2p - P o ;  + I 5 7c 5 - I (5.12) 

P o  -P1 
and dp = '/z ( p ,  - pl). In view of the fact 
thatf . aw/ap is the most important term con- 
taining w in (5.4) one may draw the conclusion: 
w has an extremum in the vicinity of the mid- 
troposphere which is the result of the fact that 
the wind increases approximately linearly with 
height. This forms the basis for the assumption 
of a parabolic variation of the vertical velocity 
with height implicit in most two-parameter 
models (cf. EADY, 1952; ELIASSEN 1952). 

It is quite obvious that any assumption of 
the form (5.5) means an inconsistency because 
the equations governing the motion of the 
atmosphere are non-linear in their character, 
which means a continuous activation of higher 
modes also along the vertical. Instead of 
requiring that the vorticity equation is satisfied 
at all levels we shall therefore follow the 
procedure used by EADY (1952) and ask for the 
vorticity equation to be satisfied if integrated 
over the vertical in various ways. Let us for 
simplicity assume a parabolic distribution of 
w with p instead of (s.II), since the detailed 
structure is of no great importance in esti- 
mating the other terms depending upon w in 
the vorticity equation. 

(5.13) (P - P1) (Po - P) w = 4Wnr ~ _ _  
P o  -P1 

It is here also assumed that w(po) = w ( p l )  = 0, 
an assumption which will be discussed later 
( 5  c). Introducing (5.9) and (5.13) into (5.4) 
and integrating between p o  and p l ,  we obtain 

The turning of the vortex tubes has been 
neglected for the time being. Another rela- 
tion is obtained in the same way as by EADY 
(1.c.). Instead of adding the contribution from 
each half of the atmosphere we subtract 
them. Thus 

From (5.14) and (5.15) we derive the following 
expression for the vertical velocity 

and the vorticity equation may be written 
- 

a5 4f -- - - 

at 3f+5 
- + -- v - 05 + v . vf= o ( 5. I 7) 

To be able to compare this with (5.7) we 
introduce "f = 413 - 5 and v* = 4 1 3 .  V. Thus 

g 4f + ___ v* . 05* + v* * vf= 0 ( 5 .  18) 
at 4f+C* 

If 5" mf an error of about 2s % is made 
in evaluating the vorticity change by using 
equation (5.7) instead of ( 5 .  I 8). The approxi- 
mation made in disregarding the horizontal 
gradients of the vertical velocity is in most cases 
permissible. These terms are of course of 
principal importance in cases of shear lines or 
intense jet streams, but it is doubtful if such 
phenomena can be treated with a one-param- 
eter model, which describes the vertical wind 
shear relatively crudely. 

Equation (5.18) is interesting in that there 
is a systematic difference between areas of 
cyclonic and anticyclonic relative vorticity. 
The former move more slowly and the latter 
more rapidly than the pure advection indicates. 
Obviously the absolute vorticity is not con- 
served. However, the changes depend u on 
the gradient of the relative vorticity, w L ch 
is small (= - v f )  in areas where q* has 2 

maximum or a minimum. Thus the total 
range within which q* varies over the field 
remains approximately constant in time. 

It is difficult to judge from the error maps 
of the series of computations presented above, 
if (5.18) would mean an improvement of the 
present method. This will be tested in coming 

Tellus VII (19SSi). 1 
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forecasts. It should be kept in mind, however, 
that it is based on the assumption that the 
vertical variation of wind as well as vertical 
velocity is the same everywhere. We know, 
for example, that there are systematic differ- 
ences between cyclones and anticyclones no- 
ticeable for example in systematic variations 
in the height of the equivalent barotropic 
level (cf. BOLIN and CHARNEY, 1951). This may 
counteract the effects described. 

b. The relation between wind and pressure in 
the nondivergent case 

All three forecast-equations (5.2), (5.7) and 
(5.18) have the characteristic feature that a 
knowledge of the wind field at one instant 
permits an evaluation of the development in 
time without any knowledge of the pressure 
field. In reality the pressure field is better 
known than the wind field and therefore the 
wind observations usually are supplemented 
by the geostrophic wind computed from the 
pressure field. The reason for introducing the 
geostrophic approximation in the barotropic model 
is therejore merely to be able to use both pressure 
and wind observations as initial data in the com- 
putations. It is not necessary from the com- 
putational point of view. We shall here discuss 
the more general relation between wind and 
pressure in some detail. 

Let us for this purpose consider an internally 
consistent model of the atmosphere. At this 
first stage we again choose a homogeneous and 
incompressible fluid with a fixed upper surface. 
Thus div v = 0. Taking the divergence of the 
equations of motion we arrive at the following 
equation relating the pressure field and the 
wind field to each other: 

(5.19) 

where fy = a$/+, f x  = af/ax and 4 = p i e .  
Since the motion is assumed to be non- 
divergent we can introduce a stream function 
y defined by 

Thus 

v 2 4  =fv2y + 2 (YXXPYY - Y&) +hYy +hYX 
( 5 . 4  

If neglecting the variation of the Coriolis 
parameter and the non-linear terms we obtain 

724 = f C  ( 5 . 2 4  

which is the approximate form used in evaluat- 
ing the vorticity with the aid of the geostrophic 
approximation. This relation is used in all 
barotropic (and barolinic) computations pub- 
lished so far. The neglections made in using 
(5.22) are of two different kinds. Integrating 
(5.21) over an area S and making use of Gauss 
theorem gives 

S 

Here n means the normal direction to the 
boundary, 1 is the coordinate along the 
boundary L. From (5.21) and (5.23) we see 
that the non-linear term (yxxyyy - y&) is of 
importance for a correct description of rela- 
tively small scale systems. Locally it may 
approach the size of the two terms retained in 
using the approximate relation (5.22). How- 
ever, if integrating over a large area the 
positive and negative contributions to the 
integral approximately compensate each other. 
The term depending on the variation of the 
Coriolis parameter, on the other hand, is locally 
small, but has the same sign as the westerly 
component of the motion and may therefore 
have the same sign over large areas. It is of 
particular importance in describing the large 
scale systems in the atmosphere. 

It is quite clear from (5.21) that 4 is uniquely 
determined, if y is known over the area and 
4 is given on the boundaries. In reality, how- 
ever, we observe the height of the pressure 
surfaces, i.e. the pressure field, and winds at 
these levels. Let us assume that the wind field 
at 500 mb is to be used in the non-divergent 
barotropic model. The problem is then to de- 
termine the stream function y initially so that 
the wind pattern thus defined and the corre- 
sponding pressure field defined by (5.21) agree 
with the observations as well as possible. The 

Tellus VII (193fr). I 
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present way of analysing a 500 mb map is 
essentially an analysis of the pressure field, 
using the observed winds as a guide in areas 
with few observations. We  shall at this moment 
assume that it represents 4 and our problem is 
to determine y from a given pressure field. 

Looking upon (5.21) in this way it is a 
special case of the Monge-Amptre's differential 
equation and possesses certain characteristic 
features which are of interest here. It is of the 
elliptic type if 

v24 -fy% -fxYx > - f" - (5.24) 
2 

It then has two and only two solutions, if 
the boundary values of y are specified. To  
explore the character of the non-linear terms 
in the equation (5 .21)  and this criterion we 
shall assume that fx =fy = o for the time 
being. Thus (5.24) becomes 

"3, - _  f 
f 2  ( 5 . 2 5 )  

This means that the geostrophic vorticity must 
never be smaller than - f/2. In this case (5 .21)  
may be written 

Thus the product (2yxx +f) (2yyy +f) always 
is positive and either both factors are 
or both are negative. The two possib e solu- 
tions are characterized by 

positive 

being the absolute vorticity. For continuity 
reasons it therefore follows that the solution of 
(5.21) is characterized by the fact that the 
absolute vorticity is positive everywhere or 
negative everywhere. In the northern hemi- 
sphere of course the only solution of interest 
is the one where ?J > 0. In the case of a circular 
vortex we here recognize a well-known fact. 
For a given pressure field there exist two 
possible soiutions to the gradient wind equation. 

If the inequality (5 .25)  is not fulfilled equation 
(5.21) is hyperbolic in this region. However, 
t h s  is usually the case only in very limited 

areas. For such an area specifying 4 in the 
interior of it and y on the boundaries usually 
means an over-determination of the problem 
and no solutions exist. The features of the 
equation in this sense are very similar to those 
of linear hyperbolic equations of second order. 

It is not unusual to find areas on a Soo-mb 
map within which (5 .25)  is not satisfied. If 
introducing the notations 

we can write (5 .21)  

V ~ ~ = ~ C - - T ( A ~ + B ~ - - [ ~ )  2 ( 5 . 3 0 )  

(cf. SHERMAN, 1 9 5 2 ;  PETTERSSEN, 1953) .  W e  
here still have assumed thatf, = fy = 0. A and 
B are the two components of the deformation 
field. Whatever values of C are introduced in 
(5 .30) ,  fC + % C2 >. - f2/2. Therefore if (5 .25)  
is not satisfied the deformation field is of im- 
portance (or it is not ermissible to make 
the assumption of non-Lvergence). It  is not 
possible to draw the conclusion that the absolute 
vorticity is negative by only consulting the pressure 

field (and its derivatives) in the point under 
consideration. 

Let us next consider the terms depending 
upon the variation of the Coriolis parameter. 
To clarify some facts regarding their im- 
portance we shall for a moment neglect the 
non-linear terms and thus write (5.21) as 

I 2 - 2  " 4 - " Y + - Y u  f* ( 5 . 3  1) 7 f 
where we for simplicity have assumed that f 
is a function of y only. In middle latitudes 
the flow usually has a westerly component, 
i. e. yy < 0. The neglection of the term depen- 
ding upon the variation of the Coriolis para- 
meter then means an under-estimation of vor- 
ticity. Differentiating (5 .3  I)  with respect to 
time and making use of the vorticity equation 

2 U  %=&+fy z= -V.v ([+f) (5 .32 )  
at at 

Cg being the geostrophic vorticity [,=f-l v2 4. 
(5.32) shows that the geostrophic vorticity is 

Tellus VII ( . 955 ) ,  1 



F O R E C A S T I N G  WITH T H E  B A R O T R O P I C  MODEL 43 

not conserved but decreases in an area were 
the westwind increases and vice versa. Accor- 
dingly errors are introduced in 24 / a t  if neg- 
lecting the variation of the Coriolis parameter. 
Let us for example assume that tl increases 
with 10 m/sec over an area of 5 . 108 km2. 
Putting fy /f= 2 . 10-7 m-1 we obtain an error 
in evaluating the circulation around this area 
which corresponds to a velocity of about 2 
m/sec along the periphery. This velocity field 
then induces systematic errors in the vorticity 
advection. 

The velocity field given by (5.20) is non- 
divergent, the geostrophic wind is not. It is of 
course questionable if the assumption of non- 
divergence is permissible, but if we want to 
remove this assumption it certainly must involve 
more than merely estimating the divergence 
geostrophically (cf. 5 d). It is therefore advan- 
tageous to apply this assumption strictly. The 
velocity field to be added to the geostrophc 
one to make it nondivergent is easily found 
by introducing the notations 

where v2a =fyv 

The intensity of this additive velocity com- 
ponent is of the same order of magnitude as 
the one mentioned in the previous paragraph. 

We  shall not prolong this discussion, as the 
importance of the different terms in (5.21) is 
best illustrated by making a forecast using the 
correctly computed stream-function. 

If the equation is elliptic in its type one can 
solve for y from a knowledge of 4 by relaxa- 
tion methods. The criterion for elli ticity 
depends upon the solution itself (5.247, but 
if neglecting the variation of the Coriolis 
parameter it is only a function of the given 
values of 4 and J (5.25). To avoid having to 
investigate if this criterion is satisfied at every 
step in the iterative process and to investigate 
the importance of the various terms separately 
the terms dependmg on fx andf were neg- 
lected in the following considerations. Let us 
assume we have an approximate solution y'. 
Denoting the residual by E we obtain 
Tellus VII (19.55). 1 

p y '  + 2 (y:xp;y - v::) - ++= E (5.34) 

Now vary the function y' in order to decrease 
the residual 6 successively. We  get 

+ (.f+ 2W;x) sy;y = BE 

This is a linear elliptic differential equation in 
&y' if (5.25) is satisfied. By using the approxi- 
mate solution y' we can estimate this correc- 
tion cly' by solving this linear equation b 

ferences for the evaluation of the derivatives 
of &' (5.35) becomes 

relaxation methods. Introducing finite di Y - 

(5.37) 

A s  being the gridsize at a particular latitude. 
g(Vg) is a function of the latitude and depends 
upon the map projection used. At the point 
( i , j )  (5.36) may be satisfied by putting 

If now assuming that &i,j = - ~ i , j  and that 
~ i , j  is given by the finite difference form of 
(5.34) we have improved the solution in the 
point (i, j )  and the new value y:,'j is 

y:,'j = y;, j + sy;, j (5.40) 

The correction thus obtained does not give a 
complete agreement for the new values at the 
point (i,j) because of the non-linear character 
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of (5.34) and the linearization that is involved 
in the derivation. It is, however, no point in 
trying to correct for this now before the other 
points have been relaxed in the same way, 
because it is still only an approximation. Thus 
we proceed to the next point and in correcting 
the y'-value we make now use of the new and 
better value y" in the points already treated. 
The method then becomes s i d a r  to the so 
called Liebmann-method. The convergence of 
an iterative process of this kind has been 
discussed by NIRENBERG (1953). 

It was mentioned before that the criterion 
for ellipticity usually is not fulfilled every- 
where on an ordinary soo-mb map. For 
example on October 2, 1954, 0300 GMT the 
inequality (5.25) was satisfied over about 94 % 
of the total area. The procedure outlined above 
breaks down in the cases when the equation 
becomes hyperbolic at some point. To be 
able to get an idea of the importance of the 
term it was therefore decided to change the 
value of vZq5 in those points so that 

(5.41) 
J 

where OL = 0.97 < I. This is of course not 
going to be the ultimate method to be used, 
but will still be of some interest here. The 
most serious consequence of this modification 
of the data is that the circulation around 
the total area is changed somewhat. 

The results of some forecasts using the stream 
function thus obtained will be reported in a 
following issue of Tellus. Some questions 
regarding the transformation to a stereographic 
projection will also be discussed. 

c. The efect o f a  non-vanishing divergence 
In the derivation of (5.18) as well as the 

ordinary forecast equation (5.7) it was assumed 
that w(po)  = o ( p J  = 0, i.e. the horizontal 
divergence integrated over the vertical is 
equal to zero. In other words, we have used the 
non-divergent barotropic model. Also the con- 
siderations in 5 b apply to this case. The fact 
that the ressure changes at the surface of the 

total pressure indicates that this assumption is 
permissible as a first approximation as shown 
by CHARNEY (1949). Extending the integration 
to the top of the atmosphere (pl = 0) he 
derived the expression 

earth o n y  P amount to a few per cent of the 

- 
x f 2P 
- at + v . v ( K ~ + ~ ) = - - ~  Po at (5.42) 

where yo is the surface pressure. (Here again 
it has been assumed ( gf). 

Even if this term is small it is of principal 
importance as has been shown by ROSSBY 
(1945) and YEH (1949). For such a demonstra- 
tion it is again feasible to study an idealized 
model of the atmosphere, i.e. a homogeneous 
and incompressible fluid, however, now with 
a free surface to permit the divergence to be 
different from zero. They found that the diver- 
gence term determines the character of dis- 
persion in such fluid and Yeh also attempted 
to account for the existence and the per- 
manence of blocking waves. The importance 
of this term is mainly noticeable for very long 
waves. 

The question is, however, if this model 
takes the divergence into consideration in the 
way it appears in the real atmosphere. W e  are 
interested in studying the changes of the flow- 
pattern within the troposphere and the vertical 
integration should therefore be extended over 
the troposphere only. We  now know that 
the vertical velocities at the tropopause are quite 
systematic in that cyclones have a low tropo- 
pause and anticyclones a high one. These 
variations easily amount to zoo mb indicating 
that the horizontal divergence or convergence within 
the troposphere as a whole may change the depth 
of the troposphere with values up to about 20 %. 
This effect is approximately depicted by 
modifying the barotropic model in the fol- 
lowing way: On top of the homogeneous and 
incompressible fluid layer, which is supposed 
to represent the troposphere, and is in motion 
accordingly, we place another fluid layer at 
rest with a density chosen in such a way that 
the vertical motion of the interface is of the 
same relative magnitude as the motion of the 
tropopause in reality. The motion induced in 
the upper fluid can be assumed to be small by 
letting the depth of it approach infinity. The 
motion in the lower fluid then is governed by 
the equations 
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x = ( e  - e’)/e, where e and e‘ are the 
densities of the lower and upper fluid re- 
spectively. The vorticity equation (5.2) is not 
changed but we are not permitted to put the 
divergence equal to zero. We have instead 
to relate it to the changes of the depth of the 
fluid aS given by the continuity equation in 
(5.1). To get a crude idea of the importance of 
the divergence term we shall first make the 
same approximations as used in deriving the 
forecast equation (5.7) except for putting div 
v = 0. This is of course inconsistent in certain 
respects. We shall return to a more exact 
formulation of the problem in section (d). 
For the time being we thus introduce the 
geostrophic approximation 

xg 2 

P = f v  
(5.44) 

The variation off with latitude is neglected. 
For a given distribution of we see that the 
total range for D is inversely proportional to x .  
For a ty ical wind pattern at 500 mb the total 

600-800 m. The variations in the height of 
the tropopause amount to five or ten times 
this value. Changes of this order of magnitude 
at the interface between the two fluids in our 
model are obtained by putting x =8. From 
(5.43) we now can derive the forecast equation 

range o P the height of the 500 mb surface is 

a D  
at (v2 - P) - =J (7, D)  (5.45) 

where 

(5.46) 

It has here been assumed that the convective 
terms in the continuity equation can be neglec- 
ted, which is true in case of exact geostrophic 
flow. The two terms on the left side of the 
e uation (5.45) become equally important 
w a en the wave length L is given bv L = v ” 
=zn\lxgD/f”. For the values x = 1/8, g = 
= 10 m sec-2, Do = 104 m andf = 10-* sec-’ 
we obtain L = 7;ooo km. 

YEH (1949) has studied the properties of 
waves in a barotropic model with a j e e  
surface and his results are directly transferable 
to this model provided (5.46) is used for 
evaluating 1. Ths  modification is, however, 
very important. For example in applying the 
results to a study of blocking Yeh is forced to 
Tellur VII (1955). 1 

assume the solitary wave to be of very large 
scale to obtain significant results. The con- 
siderations above reduce the scale by a 
factor of about \i’X - 3  which brings the 
systems in very good agreement with the size 
of actually observed blocking ridges. This 
supports the idea that already the simple 
equation (5.45) would mean an improvement 
compared with the present forecast formula 
(5.7). Only the largest components of the 
flow are influenced by this change but in view 
of the fact that the results of the computations 
presented in section 3 seem to indicate that 
(5.7) describes the development of the very 
largest systems less accurately than middle 
sized disturbances it would be of interest to 
use eq. (5.45) in some actual forecasts. This is 
being planned. 

d. The interplay between the wind and pressure 
jields in the divergent case 

The treatment in the previous section was 
very approximate. The purpose was only to 
point out one principle effect of a non-vanish- 
ing divergence. It is now of some interest to 
extend the reasoning and to investigate in 
which way the more general divergence equa- 
tion also here might replace the 

more general set of forecast equations for the 
barotropic model. Some comments on this prob- 
lem have also been given by CHARNEY (1955). 

We shall make use of the following very 
important fact concerning the average motion 
of the atmosphere: The horizontal divergence is 
one order of magnitude smaller than the relative 
vorticity. This is obviously true if considering 
the average through the whole atmosphere, 
since the percentage variation of the pressure 
at the surface is s m d  (Io-%ec-l). Even if we 
only consider the troposphere and assume the 
tropopause to be a material surface, we find 
that the height variations of the tropopause in 
connection with disturbances in the tropo- 
sphere give rise to an average horizontal diver- 
gence in the tro osphere which is less than 

hand, is abont one order of magnitude larger. 
The discussion here will be limited to the 

barotropic case and we shall use the model of a 
homogeneous and incompressible atmosphere 
with an other infinitely deep upper layer on 

approximation. In this way we sh a l r t r o p h i c  arrive at a 

~o-~sec-l. The re P ative vorticity, on the other 
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top. The motion of such a fluid is governed by 
the equations (5.1) if replacing g by xg where 
as before x = (e- e')/e. e and e' are the den- 
sities of the lower and upper fluids respectively. 

From the equations (5.1) we derive the 
vorticity equation and the divergence equation 
and obtain the following set of equations. 

^L 4 -+v-  v (f+C)+(f+C) divv=o (5.47) at 
a 
- (d ivv)+v.  v (divv)+(divv)2--f - 
at 

au av au av ) +f,u-fxv+gv2D=o 

(5.48) 
a D  -+v .  v D +  D div v = o  
at (5.49) 

Putting div v = o the vorticity equation shows 
that the wind field completely determines its 
own development. The divergence equation 
is reduced to a relation between the pressure 
and wind fields not containing any time deriva- 
tives and the continuity equation becomes an 
identity. 

A non-vanishing divergence influences the 
vorticity equation in two ways. The wind can 
no longer be represented by a stream function 
only, but the divergence field must be associat- 
ed with a velocity field, which can be describ- 
ed by a velocity potential. Let us therefore put 

where 

(5.51) 
02y=C 
VzX=div v 

Secondly, the absolute vorticity is not conserv- 
ed because of the divergence. However, since 
the vorticity is one order of magnitude larger 
than the divergence and the time-scale of at- 
mospheric disturbances is one day or more both 
these effects are comparatively small. The major 
changes of the flow are already obtained by the 
non-divergent model as indicated by the com- 
paratively successful results with this model. 
It is therefore not necessary to know the divergence 
field with the same percentage accuracy as the 
vorticity field. We therefore are permitted to 

neglect some of the terms in the equations (5.48) 
and (5.49), since these equations are used for 
obtaining the proper relation between the 
divergence field and the vorticity field. We 
shall later return to the question of the condi- 
tions under which these simplifications are 
permissable, as well as their physical m'eaning. 
Neglecting small terms in (5.48) we obtain the 
same balance equation between the pressure 
field and the wind field as in the non-divergent 
case. 

while (5.49) will be used without any simpli- 
fications. The following procedure for numeri- 
cal integration then is suggested: At a certain 
time t * A t  we know y = y', x = x' and 
D = D" and sindarly at previous times. (At is 
the time step used in the integration.) Thus 
(a[/&)' can be determined from (5.47) and 
5" + I is obtained by linear extrapolation 

We then obtain yT+I by solving the Poisson 
equation (5.51) relating y and 5. This is done 
by relaxation method and the linear extra- 
polation from y7-I and y' gives a first guess. 
y' + I determines the non-divergent component 
of the wind field. We next want to determine 
the corresponding pressure field D 7 f r  with the 
aid of (5.52). The major part of the wind field 
v' + I is given by y7+ I and the small component 
given by xr+1 can be neglected, since we only 
need approximate values of D and still are able 
to forecast y with good accuracy. Thus the 
right side of (5.52) can be evaluated and DT+I 
is obtained by solving a Poisson equation for 
example by relaxation. Finally we want to 
get a better estimate of xT+I to be used in the 
next time-step. The wind and pressure fields 
and their changes imply a certain divergence 
field according to (5.49). Putting 

and evaluating v 7 + ' / a  . v D7+'/2 as the mean 
value over the time interval between t - At  and 
(t + I) d t  we can evaluate (div v)'+l/a. With 
the aid of (5.5 I) we can determine x7 +'In and 
obtain finally x7+1 by extrapolation 
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Thus we are ready for the next time step. 
Since we only need an approximate value of 
x it may even be permissable to neglect the 
convective term i (5,49) as it is small in quasi- 
geostrohic flow. 

At the initial time z = o only Do and yo  are 
known, the latter from the solution of the 
simplified divergence equation as outlined in 
the previous section. We therefore first have 
to determine xo, which can be done approxi- 
mately by neglecting the influence of the 
divergence in (5,47). Thus we can get an 
approximate value of (2C/at)" and thus also of 
(2ylat)'. With the aid of (5.52) we can evaluate 
(aD/at)o and then solve for x 0  from (5.49). 
The computations can then start as described 
previously except for the fact that uncentered 
differences have to be used. 

The scheme outlined here is possible only if 
ly represents the major part of the wind field 
and the wind field corresponding to x merely 
is a comparatively small correction. 

Forecasts with this method are being pre- 
ared and the results will be reported in a 

following issue of Tellus. The details in the 
computational procedure wdl then also be 
given. 

We shall give a few additional comments on 
the approximations made. The most serious 
one is the neglection of the time-dependant 
term d(div v)/dt in (5.48). Hereby all gravity- 
inertia oscillations are eliminated and a balanced 
state between pressure and wind is assumed. 
We can get an approximate idea of the impor- 
tance of these rocesses in the following way: 

Since (div VY is small, (div v ) ~  certainly can 
be neglected in (5.48). Furthermore we re lace 
the total derivative d(div v)/dt by the loca P one 
neglecting the convective term v v (div v). 
We shall see that maintaining the local time 
derivatives in the equation permits the exi- 
stance of gravity-inertia waves the speed of 
which (c) is about 100 m/s. As long as c is 
lar e compared with v these waves are fairly 

tive term. Under all circumstances it means 
less simplifications than merely using the balance 
equation (5.52). We shall furthermore disre- 
gard the convective term in the continuity 
equation. This term is zero if the wind is 

we Fi 1 described even if neglecting the convec- 
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parallel1 with the isobars and therefore as 
long as the departures from geostrophic or 
gradient flow are small this simplification is 
permissable. Finally we assume that the per- 
centage variations of D are small and replace 
D by Do. The continuity equation becomes 

+ d i v v = o  (5.56) &'at 
I aD 

With these simplifications combination of 
(5.48) and (5.56) for elimination of aD/at 
gives 

a 2  
- (div v) - xgDo v 2 (div v) +f (*f+ 5) div v = 
a t 2  

(5.57) 

Let us assume that the changes of the wind 
field are known over a certain time interval. 
We can then consider (5.57) as a wave-equation 
with a forcing term which is a function of 
these variations of the wind field and div v is 
determined if proper initial conditions are 
prescribed. It is obvious that this viewpoint is 
possible only if the divergence is small so that 
the right side of equation (5.57) is practically 
independant of it. In other words the "feed 
back" on the forcing term from the divergence 
can be disregarded. The homogeneous part of 
this equation is the same equation (generalized 
to two dimensions in space) as CAHN (1945) 
obtained for the adjustment of the pressure 
and wind fields to each other. The solution of 
(5.57) is composed of two parts, one being the 
solution of the homogeneous equation with 
certain initial values of div v and a (div v)/& 
and another being the solution of the inhomo- 
geneous equation with the initial conditions 
div v = 2 (div v)/at = 0. The solution of the 
homogeneous equation is in principle the same 
as given by Cahn and takes care of the adjust- 
ment of an initial out of balance between the 
pressure and wind fields. The other part of the 
solution gives the steady adjustment of the pres- 
sure field because of the changing wind field. 

CHARNEY (1955) points out that the use of the 
geostrophic approximation as initial conditions 
in the primitive equations of motion gives rise 
to large oscillations. It is clear from (5.57) that 
this must be the case. The geostrophic wind 
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has a small divergence div vg = v - a-1 cot v, 
where v is the wind component south-north 
and a is the radius of the earth. Neglecting 
(div v), and v * v div v in (5.48) as before 
we furthermore obtain at the initial instant 

= v . (Vg' v vg) ( 5 . 5 8 )  

This is also different from zero and has large 
values in areas of strong curvature of the flow, 
or if the deformation field is strong. The 
solution of the homogeneous e uation then is 

of the adjustment of the wind and pressure 
fields towards an equilibrium characterized by 
(5 .52 ) .  Relating the wind and pressure fields to 
each other by (5 .52 )  initially means that we put 
div v = a (div v)/at = o and no oscillations of 
this kind appear. 

The equation (5. 52) has a maximum speed 
of progagation of influences which is equal to 
co 7 \ / x  goo. With the values previously 
assigned to x and Do we get co=400 km 
h-1. A change of the wind field at one point 
does not influence the pressure field beyond a 
distance of about 600 km in 11/, hour which is 
the time step used in most forecasts presented 
here. The use of the balance equation (5.52) on 
the other hand means that the pressure imme- 
diately is influenced over the whole area con- 
sidered. 

a large amplitude oscillation an x is a reflection 

In the derivation of (5.57) we made some 
approximations in the continuity equation 
which were not necessary if using the balance 
equation (5.52). It is therefore questionable if 
any improvements would be obtained by using 
this equation. However, it would be desirable 
to investigate this in some more detail. 

The discussion has here been restricted to a 
barotropic model of the atmosphere. Since co 
is so large and the divergence small in this 
model, the refinements in this last section will 
probably not improve the forecasts essentially. 
It is, however, of some interest to have these 
processes clarified in this comparatively simple 
case, as the importance of gravity-inertia waves 
probably is greater in the baroclinic case. Here 
we the encounter other difficulties. The speed 
of the internal waves, that may exist, is smaller 
than the influence speed given above (cf. BOLIN 
1953 b). Furthermore ROSSBY (1938) already 
pointed out that in the case of a one layer fluid 
the wind field is very little changed during the 
adjustment, but in a two layer fluid a consider- 
able loss of kinetic energy takes place. This is an 
indication of the fact that in a stratified fluid 
the adjustment of a velocity field varying along 
the vertical is associated by a considerable 
redistribution of the mass field. The horizontal 
divergence is then not so small compared with 
the vorticity any longer and the procedure 
outlined above becomes less accurate. It is then 
questionable if any balance e uation between 

the actual processes sufficiently well. 
the wind and the pressure fie 4 ds will describe 
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