

Assuming horizontal uniformity (i.e. horizontal gradients vanish) and that $\overline{w} = 0$,

this simplifies to
$$\frac{\partial \overline{\Theta}}{\partial t} = -\frac{\partial \overline{w' \Theta'}}{\partial z}$$

Suppose the eddy heat flux decays linearly with height across the boundary layer

 $\overline{w'\theta'} = (\overline{w'\theta'})_0 [1 - z/\delta]$

Then (1) if the rate of warming is 2 K hr⁻¹ while the ABL depth is $\delta = 500$ m, what is the value of the kinematic eddy heat flux density at the surface, $(\overline{w'\theta'})_0$? And (2) if $Q_{H0} \equiv \rho c_p (\overline{w'\theta'})_0 = 300 \text{ W m}^{-2}$ and $\delta = 1750$ m, what is the rate of warming?

Exercise – plot a wind profile (Project Prairie Grass run 57)

Project Prairie Grass was a tracer dispersion experiment performed over ideal uniform terrain; gas was released continuously from a point 0.46 m above ground, and the resulting 10-min average concentration field was measured on arcs at radii R = (50, 100, 200, 400, 800) m downwind. The table gives the wind profile measured during run 57, for which the Obukhov length was effectively infinite (i.e. the surface layer was neutrally stratified**). Plot this wind profile on log-linear graph paper, and determine the friction velocity graphically from

the slope (rise-over-run) of a fit to the data.

** in a neutral surface layer, the wind profile is

this implies that $\frac{\Delta U}{\Delta \ln z} = \frac{u_*}{k_{...}}$

<i>z</i> [m]	<i>U</i> [m s⁻¹]	
16	9.89	
8	8.79	
4	8.24	
2	7.20	
1	6.42	
0.5	5.56	
0.25	4.69	

$$\frac{U}{u_*} = \frac{1}{k_v} \ln \frac{z}{z_0}$$
 (where $k_v = 0.4$), and

Exercise – calculations relating to the neutral wind profile

Suppose a neutrally stratified ABL is blowing over an open plain whose surface aerodynamic

roughness length is z_0 =0.05 m. The surface pressure and temperature are 980 hPa and

17°C. If measurements within the surface layer** give the values in the table then:

(1) what was the friction velocity u_{*} ?

(2) what was the drag τ on ground?

(3) what was the wind speed at standard reporting height (10 m)?

(4) what would be a plausible value for the standard deviation $\sigma_{_{\!M}}$ of vertical velocity?

** in a neutral surface layer, the wind profile is

this implies that $\frac{\Delta U}{\Delta \ln z} = \frac{u_*}{k_v}$

$$\frac{U}{u_*} = \frac{1}{k_v} \ln \frac{z}{z_0} \quad \text{(where } k_v = 0.4\text{), and}$$

(Again, to determine u_* you *might* use log-linear graph paper; but it can also be done without plotting the data)

<i>z</i> [m]	<i>U</i> [m s⁻¹]	
15	4.28	
3	3.07	

	N 0	° 4 5 6 7 8 9 0
	+++++++++++++++++++++++++++++++++++++++	
	+++++++++++++++++++++++++++++++++++++++	
	+++++++++++++++++++++++++++++++++++++++	
	+++++++++++++++++++++++++++++++++++++++	
	+++++++++++++++++++++++++++++++++++++++	
	+++++++++++++++++++++++++++++++++++++++	

