
  

Formally accounting for the existence of unresolved motion                       1
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● Grid spacing for today's NWP down to order 10 km

● This leaves many scales of motion unresolved

● Implication? – effects of unresolved motion must be parameterized

● Starting point to understand those effects is the Reynolds decomposition

● Let                                 and                                  be arbitrary properties

● Divide every dependent variable into the sum of a resolved part (which we can 

regard as a volume average over a grid cell) and a residual (the “fluctuation”):

● Many notations used for the “mean” (resolved part), e.g. 

● Here I'll use the overbar

● At best, only statistics of the unresolved fields f ' , g ' will be available in NWP – 

and those estimated by a semi-empirical "parameterization"

f =f (x , y , z , t ) g=g(x , y , z , t )

f =f (x , y , z , t ) + f ' (x , y , z , t )

f , F , ⟨ f ⟩

∂θ
∂ t

=− U⃗ ⋅∇ θ

A naive example of model 
"dynamics": heat advection



  

Defining the resolved variables                                                                    2

● Formally, a volume average looks like

● Here x
*
 (etc.) are dummy variables; L

x
 would be the gridlength along x. Implicitly, 

each NWP gridpoint value is an average over a gridcell of volume L
x
L

y
L

z

● Still a function of (x,y,z,t), but presumably a much smoother function than f

● Averaging a product leads to a surprising result: the first step is easy

● We simplify this using Reynolds' averaging rules

f =f + f '

f (x , y , z , t ) =
1

Lx Ly Lz
∫

x−(Lx)/2

x+(Lx)/2

∫
y−(Ly)/2

y+(Ly)/2

∫
z−(Lz)/2

z+(L z)/2

f (x* , y* , z* , t) dx* dy* dz*

g=g + g '

f g = [ f + f ' ] [g + g ' ]=f g + f g ' + f ' g + f ' g '



  

Reynolds averaging rules, and the outcome of averaging a product            3

f +g = f + g

g ' = 0

f g = [ f + f ' ] [g + g ' ]=f g + f g ' + f ' g + f ' g '

α f = α f ( α  any constant)

∂ f
∂ s

=
∂ f
∂ s

("s" being x  or y or z or t )

f = f

f g = f g

f g ' = f g ' = 0

= f g + f g ' + f ' g + f ' g ' = f g + f ' g ' “covariance”

Mean square value : f 2

Variance : σ f
2
≡ (f ')2

Standard deviation: σ f ≡ √( f ')2

STATISTICS  of    f

f g = f g

imply



  

Examples of covariances                                                                             4
● Recall the instantaneous, local vertical convective flux density of humidity is 

● The mean vertical vapour flux density is therefore

● First term is vapour transport by the resolved flow; second, by the unresolved 

flow. Multiplying by the latent heat of vapourization we get the latent heat flux 

density Q
E 
,  i.e.

● Similarly,                               being the volumetric content of sensible heat, the 

mean convective vertical flux density of sensible heat is

     where the  ρ c
p
 product has been treated as (locally) constant

● It remains to show the manner in which the covariances alter evolution of 

E = w ρv [kg m−2 s−1]

E = w ρv + w ' ρv '

ρc pT [ J m−3]

QH = ρ c p [w T + w ' T ' ]

QE = Lv E

ρv , T



  

Velocity covariances                                                                                     5
● The streamwise momentum per unit volume is: 

● Multiply by w to get the vertical flux density of streamwise momentum:

● Mean (convective) vertical momentum flux density is therefore

● Adding a new adjective and dropping others, the “kinematic” momentum flux is

     where the second term is called a “Reynolds stress”

● The Reynolds stress tensor R
ij
 is the matrix

● This can also be called the velocity covariance tensor. Diagonal elements are the 

velocity variances,                   (etc.), where σ
u
 is the standard deviation of u

τxz = ρu w + ρu ' w '

ρ u [kg ms−1 m−3]

τxz/ρ = u w + u ' w '

[
u ' 2 u ' v ' u ' w '
v ' u ' v ' 2 v ' w '
w ' u ' w ' v ' w ' 2 ]

ρ u w

σu
2
≡u ' 2



  

Reynolds-averaging the gov'ning equations: example, the heat eqn            6

● Let's start with an equation for conservation of energy. To keep life simple, let's 

assume a dry system and that the motion is adiabatic. Then

● Let's further assume the velocity is non-divergent,                  .  Then since             

                                                          we can put the heat equation in “flux form” as

● Now applying the Reynolds averaging rules, 

Dθ

Dt
≡ ∂θ

∂ t
+ u⃗⋅∇θ = 0

Dθ

Dt
≡ ∂θ

∂ t
+ ∇⋅(u⃗ θ) = ∂θ

∂ t
+

∂uθ

∂ x
+

∂ v θ

∂ y
+

∂wθ

∂ z
= 0

∂θ
∂ t

+
∂uθ

∂ x
+

∂ v θ

∂ y
+

∂wθ

∂ z
= 0

∇⋅(u⃗θ)=u⃗⋅∇ θ+θ ∇⋅⃗u=u⃗⋅∇ θ

∇⋅⃗u=0



  

● Expand each product,

● To make this look more familiar, convert back to advection form 

● Finally, we see the influence of the unresolved processes on resolved (mean) θ. 

Gradients in the unresolved heat fluxes (“eddy heat flux divergence-

convergence”) “drive” an evolution of the volume-average temperature. The 

vertical eddy heat flux is particularly important, and especially within the turbulent 

ABL

● compare this with the naive "pure dynamics" treatment (eqn on page 1)

∂θ
∂ t

+ ∂
∂ x

[u θ + u ' θ ' ] + ∂
∂ y

[ v θ + v ' θ ' ] + ∂
∂ z

[w θ + w ' θ ' ] = 0

Dθ

Dt
≡ ∂θ

∂ t
+ u ∂θ

∂ x
+ v ∂θ

∂ y
+ w ∂θ

∂ z
= −

∂u ' θ '
∂ x

−
∂ v ' θ '
∂ y

−
∂w' θ '

∂ z

Reynolds-averaging the gov'ning equations: example, the heat eqn           7



  

● Recall the instantaneous u-mtm eqn is

● Neglecting molecular friction and adopting flux form (under the Boussinesq 

approximation, density treated as constant and velocity assumed non-divergent),

● After applying the Reynolds average, and bringing advection terms to the lhs,

● Gradients in the unresolved (or “eddy”) momentum fluxes, i.e. Reynolds stress 

gradients, result in acceleration (or deceleration) of the resolved velocity

Reynolds-averaging the governing equations: example, u-mtm eqn             8

Du
Dt

≡
∂u
∂ t

+ u⃗⋅∇ u =
−1
ρ

∂ p
∂ x

+ f v + ν∇
2u

∂u
∂ t

=
−1
ρ0

∂ p
∂ x

+ f v − ∇⋅( u⃗ u) =
−1
ρ0

∂ p
∂ x

+ f v −
∂uu
∂ x

−
∂ vu
∂ y

−
∂wu
∂ z

∂u
∂ t

+ u
∂u
∂ x

+ v
∂u
∂ y

+ w
∂u
∂ z

=
−1
ρ0

∂ p
∂ x

+ f v −
∂u ' u '
∂ x

−
∂ v ' u '
∂ y

−
∂w' u '

∂ z
“turbulent friction”

“molecular friction”



  

Fine, we need to estimate these unresolved fluxes – but how?                   9

● Will illustrate only the so called “first-order” closure. Taking the vertical eddy flux 

of heat as an example, by analogy with Fourier's law of conduction we write

where K
h
  [m2 s-1] is the “eddy diffusivity for heat” (very much larger than the 

molecular thermal diffusivity). The eddy flux is “driven” by the vertical gradient in 

the resolved (or “mean”) potential temperature

● So what is the eddy heat flux in a neutral layer?

● This “parameterization” leaves us with the problem of how to prescribe K
h

● Some empiricism is inevitable

● Analogous closure for Reynolds stresses of form                                                      

 where K
m
 [m2 s-1] is the “eddy viscosity”  (often set equal to K

h 
)

w' θ ' =− Kh
∂θ
∂ z

u ' w ' =− Km [ ∂u
∂ z

+
∂w
∂ x ]



  

K(z)



Qualitative profile of the Ks                                                                         10

● Varies in proportion to z near ground

● Increases with increasing mean wind shear

● Increases with increasing thermal instability

● Becomes small at the top ( δ ) of the ABL
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