The “ageostrophic wind” and the "isallobaric wind"

- QG model emphasizes role of horizontal divergence, i.e.
 \[
 \frac{D g \eta}{D t} = -f_0 \nabla \cdot \vec{V}_{ag}
 \]

- Geostrophic wind (on an \(f \) plane**) is non-divergent, so interest is the ageostrophic wind

- Above the friction layer, horiz. mtm eqns. can be written
 \[
 \begin{align*}
 \frac{D u}{D t} &= - \frac{1}{\rho} \frac{\partial P}{\partial x} + f v = f \left[v - V_g \right] = f \, v_{ag} \\
 \frac{D v}{D t} &= - \frac{1}{\rho} \frac{\partial P}{\partial y} - f u = -f \left[u - U_g \right] = -f \, u_{ag}
 \end{align*}
 \]

 or
 \[
 \frac{\hat{k}}{f} \times \left[\frac{D \vec{V}}{D t} - \vec{F}_{fric} \right] = \vec{V}_{ag}
 \]

 \[
 \begin{vmatrix}
 \hat{i} & \hat{j} & \hat{k} \\
 0 & 0 & 1/f \\
 \frac{D u}{D t} & \frac{D v}{D t} & 0
 \end{vmatrix}
 \]

 \[
 = u_{ag} \, \hat{i} + v_{ag} \, \hat{j} + 0 \, \hat{k} = \frac{-1}{f} \frac{D v}{D t} \, \hat{i} + \frac{1}{f} \frac{D u}{D t} \, \hat{j} + 0 \, \hat{k}
 \]

 The ageostrophic wind is in the horiz. plane, perpendicular (and oriented to the left of) the acceleration vector

**A local approximation of the spherical earth as a plane normal to the zenithal component of the earth's rotation... \(f \) is assumed to be constant on the plane... valid in describing motions with time scales smaller than or comparable to \(1/f \). (AMS Glossary)... [as distinct from "beta plane" which allows linear variation of \(f \) with \(y \)]
“Ageostrophic wind” in relation to jet streaks: locations of con/divergence

\[\hat{k} \times \frac{D\vec{V}}{Dt} = \vec{V}_{ag} \]
The "isallobaric wind"

\[\vec{V}_{ag} = \frac{k}{f} \times \left[\frac{\partial \vec{V}}{\partial t} + [\vec{V} \cdot \nabla] \vec{V} + \omega \frac{\partial \vec{V}}{\partial p} \right] \]

\[\vec{V}_g = \hat{k} \times \frac{1}{\rho f} \nabla P \]

Define the "isallobaric wind" to be that part of the ageostrophic wind that is contributed by the first term (non-stationarity). Under the approximation that terms on the rhs are evaluated using the geostrophic wind, the isallobaric wind is

\[\vec{V}_{ia} = \frac{\hat{k}}{f} \times \frac{\partial \vec{V}_g}{\partial t} = \frac{\hat{k}}{f} \times \frac{\partial}{\partial t} \left[\frac{1}{\rho f} \nabla P \right] = \frac{-1}{\rho f^2} \nabla \frac{\partial P}{\partial t} \]

- lines of constant surface pressure tendency are "isallobars"
- isallobaric wind “driven” by spatial gradient in pressure tendency
- or (equivalently) by tendency in the pressure gradient
- isallobaric wind blows PERPENDICULAR to isallobars
The "isallobaric wind"

Let coordinate s increase down the isallobaric gradient, i.e.

- from where p is rising rapidly towards where p is rising less rapidly, or
- from where p is rising towards where p is falling, or
- from where p is falling slowly towards where p is falling faster

Then the isallobaric wind is

$$
\vec{V}_{ia} = \frac{-1}{\rho f^2} \frac{\partial}{\partial s} \left[\frac{\partial P}{\partial t} \right]
$$

Is this a "real" wind? Yes, it is one component of the departure from the geostrophic wind (within the ABL, and particularly near the surface, friction is liable to be a more important deviation). Furthermore its divergence is important (our starting point), given by

$$
\nabla \cdot \vec{V}_{ia} = \frac{-1}{\rho f^2} \nabla^2 \frac{\partial P}{\partial t}
$$
Isallobaric chart (from Vizaweb) – relevant to 12Z winds and our fcst for Wed. 12Z**

**YEG reported "18010KT" at 12Z Wed.