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Motivation: 

● "forecasters do not rely exclusively on computer-generated guidance... they attempt to 

understand the factors likely to be responsible for the current and the next day's weather." 

(Durran & Snellman, 1987)

● weather forecasting is largely synonymous with the ability to anticipate how the isobaric 

height field will develop, but this is not addressed by geostrophic theory

● the QG eqns predict the rates of change of the height, vertical velocity and vertical vorticity; 

they are inexact, but provide a useful interpretive theory

● the QG eqns are useful because in mid-latitude synoptic scale systems "the fields of 

vertical motion (ω) and geopotential tendency ( χ = g ∂Z/∂t ) are primarily determined by 

the distribution of vorticity advection and thermal advection."

● QG theory reduces the 5-variable primitive equations to a 1-equation system: all variables 

(u
g
, v

g
, ω, p, T ) can be obtained from the height field Z. Early NWP models exploited this.



  

Derivation: 

● Rossby, Eady, Charney, Phillips and others: e.g. Charney 1949, On a Physical Basis for 

Numerical Prediction of Large-Scale Motions in the Atmosphere, J. Meteorol. 6, 371-385.

● emerges from scale analysis; or by an asymptotic expansion of the governing eqns in the 

Rossby number                     , U and L being velocity and length scales characterizing 

synoptic scale motion

Ro=U /(f L)

Assumptions/Restrictions/Idealizations: 

● adiabatic, frictionless, extra-tropical flow

● hydrostatic approx.

● β-plane* approx., 

● decompose horiz. velocity field:                             where

● neglect vertical advection

● evaluate horizontal advection using the geostrophic component (only)

f=f ( y )=f 0+β y

f 0=2Ω sinϕ0

β=(∂ f /∂ y )ϕ0
=2Ωcosϕ0/R

V⃗=V⃗ g+V⃗ ag

β=(∂ f /∂ y )ϕ0
=2Ωcosϕ0/R

V⃗ g = (ug , vg) =
g
f 0

k̂ ×∇ Z
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*as distinct from the f-plane 
approximation, wherein f is 
assumed to be constant (AMS 
Glossary)



  

Some key variables/features/definitions: 

∇H⋅V⃗ g =
∂ug

∂ x
+

∂ vg

∂ y
=

g
f 0

(−
∂2 Z

∂ x ∂ y
+

∂2 Z
∂ y ∂ x

) = 0

V⃗ g =
g
f 0

k̂×∇ Z =
g
f 0

(−
∂Z
∂ y

,
∂ Z
∂ x

)

ζg = k̂⋅(∇H×V⃗ g ) =
∂ vg

∂ x
−

∂ug

∂ y
=

g
f 0

(
∂2 Z

∂ x2 +
∂2 Z

∂ y2 ) =
g
f 0

∇H
2 Z

(only the ageostrophic 
component contributes to horiz. 
divergence)

(Poisson's eqn., easily solved numerically. Vertical vorticity equals Laplacian of the 
streamfunction. Z is "invertible" to give the vorticity and the wind)

Dg

Dt
≡ ∂

∂ t
+ V⃗ g⋅∇H material derivative following the geostrophic wind

η = ζg + f 0 + β y vertical component of the absolute vorticity

( Z , or gZ/f
0
, constitutes a "streamfunction")
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∂ζg

∂ t
+ V⃗ g⋅∇H (ζg+ f ) = f 0

∂ω
∂ p

where ∇H⋅V⃗ ag + ∂ω
∂ p

=0

Dg η

Dt
= −f 0 ∇⋅V⃗ ag

Alternative statement:

absolute vorticity of a parcel varies along its path, as 
driven by the forcing term on the r.h.s., which represents 
horizontal convergence/divergence (or equivalently, 
vertical stretching of the column)

Vorticity advection signifies horizontal divergence, which is an indicator for lift

PVA

● At the trough axis, local max in cyclonic relative 
vorticity and thus in abs. vorticity

● As a parcel moves downwind from the trough axis, its 
vorticity decreases, i.e. D

g
η /Dt <0, implying 

● Using the natural coords, value of                      is 
positive ("PVA")

∇⋅V⃗ ag > 0

− v
∂η

∂ s

height
vorticity
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[∇H
2 +

f 0
2

σ
∂2

∂ p2 ] ω =
f 0

σ
∂

∂ p
[V⃗ g⋅∇H η] +

Rd

σ p
∇H

2 [V⃗ g⋅∇H T ]

where                                                               is the "static stability" (normally positive and of 

order 10-6 in free atmos.)

σ = −
RdT

p
∂ ln θ

∂ p
[Pa−2 m2 s−2

]

If σ→∞,                             (Laplace's eqn) and if ω=0 on boundaries, then ω=0 everywhere∇H
2 ω = 0

  height gradient of 
vorticity advection

    Laplacian of temperature 
advection

Recall, we define the advective "temperature advection rate" as

and,                       . We can multiply through by -1 to get 

AT =− V⃗ g⋅∇H T

ρg [ ∇H
2 +

f 0
2

σ
∂2

∂ p2 ] w =
f 0

σ
∂ Aη

∂ p
+

Rd

σ p
∇H

2 AT

height gradient of 
vorticity advection

Laplacian of temperature 
advection

ω =−ρ g w

∝ ∝

We'd have to call this the quasi-
geostrophic "w" equation (double-u), 
rather than "omega" eqn
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In Cartesians, ∇H
2

ω = ∂2ω

∂ x2 + ∂2ω

∂ y2

J-1

J+1

J

I-1 I+1I

∂2ω

∂ x2 ≡ ∂
∂ x

∂ω
∂ x

And recall, curvature is slope of slope

Evaluate ∂ω/∂x at red points by finite 
difference, using known values on the grid:

x

y

Similarly, evaluate ∂ω/∂y at magenta points by finite difference – and if ∆x = ∆y = ∆ , then

( ∂ω
∂ x )

I−1 /2,J

=
ω I , J−ωI−1,J

Δ x ( ∂ω
∂ x )

I+1/2,J

=
ωI+1,J−ωI , J

Δ x

( ∂
2ω

∂ x2 )
I , J

=

ω I+1,J−ω I , J

Δ x
−

ω I , J−ωI−1, J

Δ x
Δ x

=
ωI+1,J + ωI−1,J − 2ωI , J

Δ x2

( ∂
2
ω

∂ x2 + ∂
2
ω

∂ y2 )
I , J

=
ωI+1,J + ω I−1,J + ωI , J +1 + ω I , J−1 − 4 ωI , J

Δ
2

Laplacian is positive if 
central value smaller than 
average of its neighbours
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ρg [ ∇H
2 +

f 0
2

σ
∂2

∂ p2 ] w =
f 0

σ
∂ A η

∂ p
+

Rd

σ p
∇H

2 AT

● interpret the LHS as (3D) Laplacian of vertical velocity, visualized with gridlength ∆

● if RHS is negative, central value of w is bigger than its neighbours (local updraft)**

● to make the temperature advection term negative, need A
T
 exceeding its neighbours – 

local "hot spot" for thermal advection implies updraft

● to make the vorticity advection term negative, we need A
η
 to decrease with increasing p, 

i.e. A
η
 to increase with increasing height – strong PVA aloft implies updraft

ρg [ wnbrs−w

Δ2 ] =
f 0

σ
∂ Aη

∂ p
+

Rd

σ p [ AT nbrs−AT

Δ2 ]

height gradient of 
vorticity advection

Laplacian of 
temperature advection

units are 
consistent

**opposite is 
true for the 
omega eqn
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χ = g
∂ Z
∂ t

[∇H
2 + ∂

∂ p ( f 0
2

σ
∂

∂ p ) ] χ = − f 0 V⃗ g⋅∇H η −
f 0

2 Rd

σ p
∂

∂ p
[− V⃗ g⋅∇H T ]

g ∂
∂ t [ Znbrs−Z

Δ2 ] = f 0 Aη +
f 0

2 Rd
2T

σ p2 g

∂ AT

∂ z

(f
0
 times) 

vorticity 
advection

proportional to height 
derivative of  
temperature advection

where                        . Again, LHS can be (loosely) interpreted as a 3D Laplacian of χ , such 

that 

● Z falls relative to its neighbours if PVA is occurring, i.e. 

● Z falls relative to its neighbours if warm advection increases with increasing with height 

Aη ≡−V⃗ g⋅∇H η > 0

See qgforcing_maps.pdf for some examples. In that file, maps are given showing the RHS of the height tendency 
equation and of the omega equation. In interpreting those charts, recall that wherever the RHS of the omega eqn is 
positive, there is forcing for ascent – whereas for the w equation a negative RHS means ascent
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