or

$$\frac{\sigma}{2} \left[\nabla^2 + \frac{f_0^2}{\sigma} \frac{\partial^2}{\partial p^2} \right] \omega = -\nabla \cdot \vec{Q}$$

If RHS of this eqn is positive (convergent **Q** vectors) expect negative ω (ascent)

 $(\omega = -\rho g w)$

7a

divergence of **Q** expressed in the natural coord. system aligned with isotherms

Note: here giving Martin's Eqs (6.40, 6.44). Holton's Eq 6.53 includes an extra term that vanishes in the f = const.approx.

> "The **Q** vector can be obtained by evaluating the vectorial change of V_{a} along the isotherm (with cold air on the left), rotating this change vector by 90° clockwise, and multiplying the resulting vector by $|\partial T/\partial n|$." (Holton)

Wherever the pattern of the **Q** vector is convergent ($\nabla \cdot \vec{Q} < 0$) the Laplacian of w at P is negative, suggesting w is more positive at P than in the neighbourhood... suggests ascent

where

$$\mathbf{p} \left[2\pi \right] \left[-\frac{3}{\mathbf{V}} \right] = \mathbf{p} \left[2\pi \right] \left[-\frac{3}{\mathbf{V}} \right]$$

 $\frac{\sigma \rho g}{2} \left| \frac{\overline{w}_{\rm nbrs} - w_{\rm P}}{\Lambda^2} \right| \approx \nabla \cdot \vec{Q}$

$$\vec{Q} = \frac{-R}{p} \left| \frac{\partial T}{\partial n} \right| \left[\hat{k} \times \frac{\partial \vec{V}_g}{\partial s} \right] = \frac{-R}{p} \left| \frac{\partial T}{\partial n} \right| \left[-\hat{s} \frac{\partial v_g}{\partial s} + \hat{n} \frac{\partial u_g}{\partial s} \right]$$

 $\frac{\sigma \rho g}{2} \left| \nabla^2 + \frac{f_0^2}{\sigma} \frac{\partial^2}{\partial p^2} \right| w = \nabla \cdot \vec{Q} = \left| \frac{\partial |\vec{Q}|}{\partial s} + |\vec{Q}| \frac{\partial \beta}{\partial n} \right|$

or, symbolically

Quasigeostrophic w equation – Q-vector formulation – example from Sanders & Hoskins 7b

$$\vec{Q} = \frac{-R}{p} \left| \frac{\partial T}{\partial n} \right| \left[\hat{k} \times \frac{\partial \vec{V}_g}{\partial s} \right] = \frac{-R}{p} \left| \frac{\partial T}{\partial n} \right| \left[-\hat{s} \frac{\partial v_g}{\partial s} + \hat{n} \frac{\partial u_g}{\partial s} \right]$$

- Closed isobars of MSLP (solid)
- isotherms (dashed)
- geostrophic wind vectors
- Q vectors

West of the low, v_g is northerly (negative), east of the low it is southerly (positive) so that $\partial v_g / \partial s > 0$; but u_g is zero on west and east sides). Thus only the term along **s** contributes, and the two negatives cancel

"The **Q** vector can be obtained by evaluating the vectorial change of \mathbf{V}_{d} along the isotherm (with cold air on the left), rotating this change vector by 90° clockwise, and multiplying the resulting vector by $\left|\frac{\partial T}{\partial n}\right|$." (Holton)

Modified from Sanders & Hoskins (1990; Weather & Forecasting Vol. 5, Fig. 3)

$$\frac{\sigma \rho g}{2} \left[\frac{\overline{w}_{\text{nbrs}} - w_{\text{P}}}{\Delta^2} \right] \approx \nabla \cdot \vec{Q}$$

Quasigeostrophic w equation – Q-vector formulation – example from Sanders & Hoskins 7c

$$\vec{Q} = \frac{-R}{p} \left| \frac{\partial T}{\partial n} \right| \left[\hat{k} \times \frac{\partial \vec{V}_g}{\partial s} \right] = \frac{-R}{p} \left| \frac{\partial T}{\partial n} \right| \left[-\hat{s} \frac{\partial v_g}{\partial s} + \hat{n} \frac{\partial u_g}{\partial s} \right]$$

- Height contours (solid)
- isotherms (dashed)
- geostrophic wind vectors
- Q vectors

Another idealized example (upper trough & ridge). Note the absence of thermal advection (isotherms parallel to height contours). The v_g component of the geostrophic wind, i.e. the component normal to the isotherms, is zero everywhere. The u_g component, i.e. the component projected onto the (curvy) **s** axis is constant in magnitude, but its orientation changes; that change (across the trough) is given by the **blue vector**, which we rotate 90° clockwise to get **Q**.

"The **Q** vector can be obtained by evaluating the vectorial change of V_g along the isotherm (with cold air on the left), rotating this change vector by 90° clockwise, and multiplying the resulting vector by $|\partial T/\partial n|$." (Holton)

Quasigeostrophic w equation – Q-vector formulation – a real world example

-9.0 -7.0 -5.0 -3.0 -2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0 3.0 5.0 7.0 9.0

Quasigeostrophic w equation – Q-vector formulation – a real world example

-2.0 -0.5 0.5 5.0 9.0 -9.0 -7.0 -5.0 -3.0 -1.5 -1.0 1.0 1.5 2.0 3.0 7.0

Quasigeostrophic w equation – Q-vector formulation – a real world example

Quasigeostrophic w equation – Q-vector formulation – a real world example

7g