EAS372 Assignment 2 (15%) Due: Fri. 14 Mar. 2014

Format: Please submit a tidy, organized report in electronic format (PDF), covering the exercises below. Text should be double spaced with font size 12 pt. No page limit. Answers added at back.

Create histogram and empirical PDF (6%)

Column-organized file YEG_Feb_81_2010.csv lists daily max, min and mean temperatures for YEG (Edmonton Int'l Airport) for every February day in the interval 1981-2010 inclusive (N = 843 days; a few days are missing). Compute the mean \overline{T} and standard deviation σ_T of the series of daily mean temperatures. Create a histogram of the daily mean temperatures, using a bin-width of 2°C. For each bin (label "j", j=1...) compute the relative frequency n_j (total count of days falling in that bin, divided by N). Plot this histogram. Then divide each n_j by the bin width (2°C) to obtain an empirical probability density function f_j . Plot f_j , and compare with a Normal distribution

$$f(T) = \frac{1}{\sqrt{2\pi} \sigma_T} \exp\left(-\frac{T - \overline{T}}{2 \sigma_T^2}\right)$$

plotting using your computed mean \overline{T} and standard deviation σ_T .

Compute eddy fluxes (6%)

Compute the 30-min average vertical flux densities of sensible heat Q_H , of latent heat Q_E , of water vapour E (= Q_E/L_v) and of carbon dioxide F_c from the raw data given in file "Timeseries13_20110816_tab.dat" (columns tab separated). The signals, recorded at 10Hz, span 13:30-14:00 MDT on 16 Aug. 2011, and were recorded over a wheat crop at St. Albert by a sonic anemometer at a height of 2.5 m. Column 1: vertical velocity w [m s⁻¹]. Column 2: T - 25 [°C]. Column 3: scaled carbon dioxide concentration "C" which can be converted to true concentration of CO2 [g m⁻³] by the calculation $\rho_{CO2} = 0.001(C + 600)$. Column 4: absolute humidity [g m⁻³]. Assume the pressure P = 91 kPa, in order to compute a mean air density ρ . Compute the fluxes as (e.g.)

$$Q_H = \rho \, c_p \, \overline{w'T'}$$

where a prime designates the deviation from the mean value.

Plot daily surface energy budget (3%)

Plot the daily cycle in hourly-averaged energy balance components (file "flanagan.txt") over grassland in Alberta, 1 July 2003. File gives net radiation (labelled Q^*), sensible and latent heat flux densities (Q_H, Q_E) and the "ground" heat flux (Q_G) . All fluxes are in [W m⁻²]; data courtesy of Dr. L. Flanagan (U. Lethbridge).

Statistics of February daily mean temperatures (T_m) at YEG

Average
$$\overline{T}_m = -9.8185\,^{\circ}\mathrm{C}$$

Standard deviation $\sigma_{T_m} = 8.0538\,{\rm ^oC}$

Minimum -35.9 °C, Maximum = 7.3 °C

Note that the Gaussian (normal) PDF will peak at $\frac{1}{\sqrt{2\pi}\sigma_T} = 0.0495$.

See last page for plot of histogram (nbins = 22) and PDFs

Calculations for fluxes over wheat canopy

Mean vertical velocity $\overline{w} = -0.0287 \,\mathrm{m\,s^{-1}}$, mean temperature $\overline{T} = 20.0869 \,\mathrm{^oC}$, mean carbon dioxide concentration $\overline{\rho}_c = 608.45 \,\mu\mathrm{g\,m^{-3}}$, mean absolute humidity $\overline{\rho}_v = 0.0076 \,\mathrm{kg\,m^{-3}}$.

Air density based on the above mean temperature, $\rho = 1.0813 \,\mathrm{kg} \,\mathrm{m}^{-3}$.

Mean value of wT is $\overline{wT} = -0.4186 \,\mathrm{K}\,\mathrm{m}\,\mathrm{s}^{-1}$

Mean value of the $w' \times T'$ product, $\overline{w'T'} = \overline{w} \, \overline{T} - \overline{w} \, \overline{T} = 0.1587 \, \text{K m s}^{-1}$. Multiplying this by $\rho \, c_p$ (where $c_p \approx 1000 \, \text{J kg}^{-1} \, \text{K}^{-1}$) we get Q_H

Sensible heat flx density $Q_H = \rho c_p \overline{w'T'} = 171.6 \,\mathrm{W}\,\mathrm{m}^{-2}$

Vapour flux density $E=\overline{w'\rho'_v}=1.239\times 10^{-4}\,\mathrm{kg}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$

Latent heat flux density $Q_E = L_v E = L_v \overline{w' \rho'_v} = 309.9 \,\mathrm{W \, m^{-2}}$

Carbon dioxide flux density $F_c = \overline{w' \rho'_c} = -1.033 \text{ mg m}^{-2} \text{ s}^{-1}$

See last page for plot of energy fluxes versus time over grassland

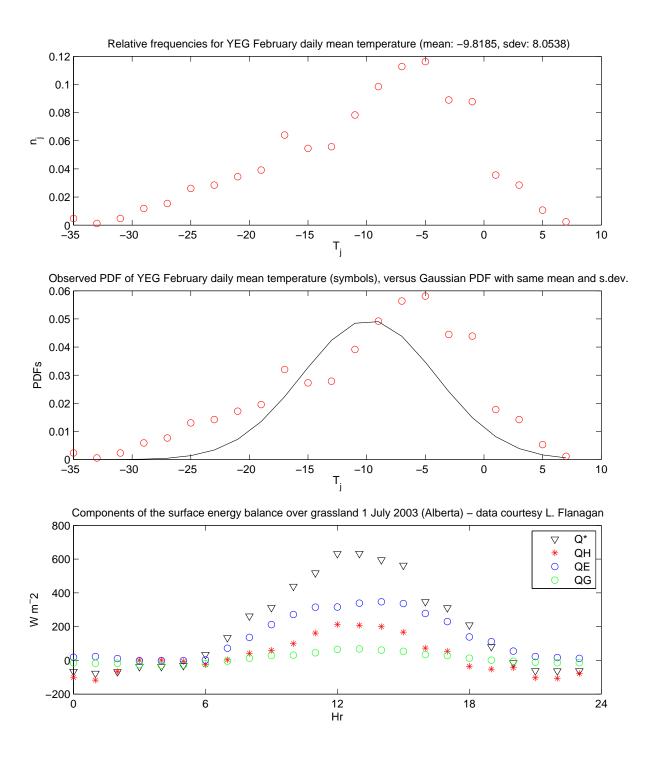


Figure 1: Figures plotted by instructor (JDW) using MATLAB.