Formally accounting for the existence of unresolved motion 1

e Horiz. gridpoint spacing for today's NWP is of order 10 km

e Leaving a wide range of scales of motion unresolved

 Implication? — effects of unresolved motion must be parameterized

 Starting point to understand those effects is the "Reynolds decomposition”

e Let f=f(x,y,z,t) and g=g(x,y,z,t) be arbitrary properties
 Divide every dependent variable into the sum of a resolved part (which we can

regard as a volume average over a grid "cell") and a residual (the “fluctuation™):

F=F(x,y,2,0)+ f(x,y,2,0 b bt e

 Many notations used for the “mean” (resolved part),
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eqg. [, F, {f).Here Il use the overbar |

At best, only statistics of the unresolved fields ', g ' will be available in NWP —

eas372_Reynoldsdecomp.odp

and those are estimated by a semi-empirical "parameterization" 2%, =20 Ahere -



Defining the resolved variables 2

« Formally, a volume average looks like

x+(L,)/2  y+(L,)/2 z+(L,)/2

f(X,y,Z,t): I Ll I f f f f(X*,y*,Z*,t) dX* dy* dZ*

x—y+z x=(L)12 y-(L)2 z—(L,)/2

Here x, (etc.) are dummy variables; L would be the gridlength along x. Implicitly,

each NWP gridpoint value is an average over a gridcell of volume LXLyLZ

Still a function of (x,,...Y,, » Z,,« » t, ), where indices |,J,K label the gridpoints; but

presumably a much smoother function than f=f+f"

Averaging a product leads to a surprising result: the first step is easy

¥

" (etc)sothat fg=[f+f'][g+g'l=fg+fg'+f g+f'g
We simplify this using Reynolds' averaging rules ¥ we need tu be able +o

O(\IUG%Q 0IM51/\H|";‘CS 1[’(9 (e:j> ~—{j.VT - J/ M—l—

<)X

g=g+g
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Reynolds averaging rules, and the outcome of averaging a product 3

tg=f+g Key STATISTICS of f
af=af (a any constant) Mean square value : f_2
gf — ?C ("s" beingx oryorzort) Variance : O? = (f '>2

S S f

Standard deviation: o, = \/(f ')’

g iXeS we Say The
“fgefg i geiig = fg g oD (ko

hs “horl'Zon"'m” -
l/.ow'oge/\e‘?us”
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Examples of covariances 4
* The instantaneous, local vertical convective flux density of water vapour Is

B B _’,n ‘H'|€ >\I AW —
E:va [kgmzsl] ABL } Vuz —éx -\——gi"l' AZ-O
 The mean vertical vapour flux density is therefore e DN D N __'*

— =0
v ' # Tn horiz. homojoeqeo.,d Flow
 First term is vapour transport by the resolved flow; second, by the unresolved

flow. Multiplying by the latent heat of vapourization we get the latent heat flux

density Q_, ie. Q; =L, E oo iﬁ =0 ﬁ/z) - ;/0)4' c
S w=0 Yz

* Similarly, pc,T ] m_B] being the volumetric content of sensible heat, the

mean convective vertical flux den5|ty of sensible heat is

_ /<m€mm"?c vertical eaua/ 7[‘,(/\)( of
Qu=pc, W T + Seasible hoat

where the p C, product has been treated here as (locally) constant

* |t remains to show the manner in which the covariances alter evolution of pP,, T
STof{ED HERE 2 MARCH Qo1
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Velocity covariances 5

« The zonal momentum per unit volume is: pu [kgms ' m’]

Multiply by w to get the vertical flux density of zonal momentum: puw

Mean (convective) vertical flux density of zonal momentum is therefore

T,=puw+puw

Adding a new adjective and dropping others, the “kinematic” momentum flux is

!

—_— 11 Y27 I
T /p=uw+u'w

where the second term is called a “Reynolds stress”

The "Reynolds stress tensor" F\’ij IS the matrix | " C o ——

This can also be called the velocity covariance tensor. Diagonal elements are the

velocity variances, Gf,Eu ' (etc.), where o Is the standard deviation of u



Reynolds-averaging the gov'ning equations: example, the heat egn

 Let's start with an equation for conservation of energy. To keep life simple, let's

assume a dry system and that the motion is adiabatic. Then

DO _ 56 o
— =29Y% L, 31.Ve =0
DL =g UV

e Let's further assume the velocity is non-divergent, V-1i=0 . Then since

V- (i8)=u-V0+6 V-i=ii- V6 we can put the heat equation in “flux form” as

oub ove oOowb
= + + + =0

DO _ 56 (= _ 08
Dt = ar TV O = ST

 Now apply the Reynolds averaging rules:

@é+8u6+8v6+8w6 — 0
ot 0Ox oy 0z




Reynolds-averaging the gov'ning equations: example, the heat egn 7

« Expand each product,

0’ = 0

86 a — 0 rn’’ i—_ N i—_ '
6t+8x [u6+u 6]+ay [v6+v 6“82 [w6+w

 To make this look more familiar, convert back to "advection form"

9  _ 96 _ ou'8" ov'e’ ow'd’
T4V W = — — —
0 X y 0z 0 X oy 0z

« Finally, we see the influence of the unresolved processes on resolved (mean) 6.
Gradients in the unresolved heat fluxes (“eddy heat flux divergence-
convergence”) contribute to evolution of the volume-average temperature. The

vertical eddy heat flux is particularly important, especially within the turbulent ABL



Reynolds-averaging the governing equations: example, u-mtm eqgn 8

* Recall the instantaneous u-mtm eqgn is

Du _ du u-Vu = _—16—p+fv+vv u;
O ox -

Dt ot “molecular friction”

* Neglecting molecular friction and adopting flux form (under the Boussinesq
approximation, density treated as constant and velocity assumed non-divergent),

ou_—10p V. (tiu==Lop _OQuu _Ovu _Owu
=~ =y 6x+fv V-(tu)= +fv

~__

0,20, L0, ou_10p, W _ovi' _oww'
- Ve 9, a B 0 /

turbulent frlctlon”
» Gradients in the unresolved (or “eddy”) momentum fluxes, i.e. Reynolds stress

/
_

gradients, result in acceleration (or deceleration) of the resolved velocity



Fine, we need to estimate these unresolved fluxes — but how? 9

« Will illustrate only the so called “first-order” closure. Taking the vertical eddy flux

of heat as an example, by analogy with Fourier's law of conduction we write

W'@':—th—e
V4

where K. [m?* s is the “eddy diffusivity for heat” (very much larger than the

molecular thermal diffusivity). The eddy flux is “driven” by the vertical gradient in

the resolved (or “mean”) potential temperature

So what is the eddy heat flux in a neutral layer?

This “parameterization” leaves us with the problem of how to prescribe K

Some empiricism is inevitable

Analogous closure for Reynolds stresses of form u'w’'=— K 57 Ox

au+aw‘

where K _[m*s™] is the “eddy viscosity” (often set equal to K, )



Qualitative profile of the Ks

Varies in proportion to z near ground
Increases with increasing mean wind shear
Increases with increasing thermal instability

Becomes small at the top ( 0 ) of the ABL

“«-F-—»

v

K(z)

10



