- Horiz. gridpoint spacing for today's NWP is of order 10 km
- Leaving a wide range of scales of motion unresolved
- Implication? - effects of unresolved motion must be parameterized
- Starting point to understand those effects is the "Reynolds decomposition"
- Let $f=f(x, y, z, t)$ and $g=g(x, y, z, t)$ be arbitrary properties
- Divide every dependent variable into the sum of a resolved part (which we can regard as a volume average over a grid "cell") and a residual (the "fluctuation"):

$$
f=\bar{f}(x, y, z, t)+f^{\prime}(x, y, z, t)
$$

- Many notations used for the "mean" (resolved part), e.g. $\bar{f}, F,\langle f\rangle$. Here I'll use the overbar

- At best, only statistics of the unresolved fields f^{\prime}, g ' will be available in NWP and those are estimated by a semi-empirical "parameterization"
- Formally, a volume average looks like

$$
\bar{f}(x, y, z, t)=\frac{1}{L_{x} L_{y} L_{z}} \int_{x-\left(L_{x}\right) / 2}^{x+\left(L_{x}\right) / 2} \int_{y-\left(L_{y}\right) / 2}^{y+\left(L_{y}\right) / 2} \int_{z-\left(L_{2}\right) / 2}^{z+\left(L_{z}\right) / 2} f\left(x_{*}, y_{*}, z_{*}, t\right) d x_{*} d y_{*} d z_{*}
$$

- Here x_{\star} (etc.) are dummy variables; L_{\star} would be the gridlength along x. Implicitly, each NWP gridpoint value is an average over a gridcell of volume $L_{x} L_{y} L_{z}$
- Still a function of $\left(x_{\mathrm{IJK}}, y_{\mathrm{IJK}}, z_{\mathrm{IJK}}, t_{\mathrm{N}}\right)$, where indices $\mathrm{I}, \mathrm{J}, \mathrm{K}$ label the gridpoints; but presumably a much smoother function than $f=\bar{f}+f^{\prime}$
- Averaging a product leads to a surprising result: the first step is easy

$$
g=\bar{g}+g^{\prime} \quad \text { (etc.) so that } f g=\left[\bar{f}+f^{\prime}\right]\left[\bar{g}+g^{\prime}\right]=\bar{f} \bar{g}+\bar{f} g^{\prime}+f^{\prime} \bar{g}+f^{\prime} g^{\prime}
$$

- We simplify this using Reynolds' averaging rules $*$ we need to be able to average quantities like (eg.) $-\vec{u} . \nabla T$ or $\frac{\partial}{\partial x} u T$

$$
\begin{aligned}
& \overline{f+g}=\bar{f}+\bar{g} \\
& \overline{\alpha f}=\alpha \bar{f} \\
& \frac{\overline{\partial f}}{\partial s}=\frac{\partial \bar{f}}{\partial s} \\
& \overline{\bar{f} g}=\bar{f} \bar{g}
\end{aligned}
$$

$$
\overline{\alpha f}=\alpha \bar{f} \quad(\alpha \text { any constant })
$$

("s" being x or y or z or t)

Key STATISTICS of f

Mean square value : $\overline{f^{2}}$
Variance : $\quad \sigma_{f}^{2} \equiv \overline{\left(f^{\prime}\right)^{2}}$
Standard deviation: $\sigma_{f} \equiv \sqrt{\left(f^{\prime}\right)^{2}}$

$$
\overline{\bar{f}}=\bar{f} \quad \overline{g^{\prime}}=0 \quad \overline{\bar{f} g^{\prime}}=\bar{f} \overline{g^{\prime}}=0 \quad \overline{\bar{f} \bar{g}}=\bar{f} \bar{g}
$$

$$
\begin{aligned}
\overline{f g} & =\overline{\left[\bar{f}+f^{\prime}\right]\left[\bar{g}+g^{\prime}\right]}=\overline{\bar{f} \bar{g}+\bar{f} g^{\prime}+f^{\prime} \bar{g}+f^{\prime} g^{\prime}} \\
& =\bar{f} \bar{g}+\overline{\bar{f} g^{\prime}}+\overline{f^{\prime} \bar{g}}+\overline{f^{\prime} g^{\prime}}=\bar{f} \bar{g}+\overline{f^{\prime} g^{\prime}}
\end{aligned}
$$

Examples of covariances

- The instantaneous, local vertical convective flux density of water vapour is

$$
E=w \rho_{v} \quad\left[\mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right]
$$

$$
\left.\begin{array}{l}
\text { In the } \\
A B L
\end{array}\right\} \quad \nabla_{0} \cdot \vec{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
$$

$$
\begin{aligned}
& \text { - The mean vertical vapour flux density is therefore } \\
& \bar{E}=\underset{V}{W} \bar{\rho}_{v}+w^{\prime} \rho_{v}{ }^{\prime} \text { eddy flux of water vapour } \cdot \cdot \frac{\partial \bar{u}}{\partial \sigma_{0}}+\frac{\partial y}{\partial y}+\frac{\partial \bar{w}}{\partial z}=0 \\
& \text { *n horiz. homogeneous flow }
\end{aligned}
$$

- First term is vapour transport by the resolved flow; second, by the unresolved flow. Multiplying by the latent heat of vaporization we get the latent heat flux density Q_{E}, i.e. $Q_{E}=L_{v} \bar{E}$

$$
\begin{array}{r}
\therefore \quad \frac{d \bar{w}}{\partial z}=0, \quad \bar{w}(z)=\bar{w}(0)+C \\
\therefore \quad \bar{w}=0 \forall z
\end{array}
$$

- Similarly, $\quad \rho c_{p} T\left[\mathrm{~J} \mathrm{~m}^{-3}\right]$ being the volumetric content of sensible heat, the mean convective vertical flux density of sensible heat is

$$
Q_{H}=\rho c_{p}\left[\bar{w} \bar{T}+w^{\prime} T^{\prime}\right]
$$

"kinematic" vertical eddy flux of sensible heat
where the ρc_{p} product has been treated here as (locally) constant

- It remains to show the manner in which the covariances alter evolution of $\overline{\rho_{v}}, \bar{T}$

Velocity covariances

- The zonal momentum per unit volume is: $\quad \rho u\left[\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~m}^{-3}\right]$

- Mean (convective) vertical flux density of zonal momentum is therefore

$$
\tau_{x z}=\rho \bar{u} \bar{w}+\sigma \overline{u^{\prime} w^{\prime}} \text { eddy mitm flux (or "Reynolds stres"s) }
$$

- Adding a new adjective and dropping others, the "kinematic" momentum flux is

$$
\tau_{x z} / \rho=\bar{u} \bar{w}+\overline{u^{\prime} w^{\prime}} \text { typically negative in } A B L \text { (see below) }
$$

where the second term is called a "Reynolds stress"

- The "Reynolds stress tensor" R_{ij} is the matrix Note: $\overline{u^{\prime} w^{\prime}} \equiv \overline{\omega^{\prime} u^{\prime}}$ (etc.)

$$
\left|\begin{array}{ccc}
\overline{u^{\prime 2}} & \overline{u^{\prime} v^{\prime}} & \overline{u^{\prime} w^{\prime}} \\
\overline{v^{\prime} u^{\prime}} & \overline{v^{\prime 2}} & \overline{v^{\prime} w^{\prime}} \\
\overline{w^{\prime} u^{\prime}} & \overline{w^{\prime} v^{\prime}} & \overline{w^{\prime 2}}
\end{array}\right|
$$

- This can also be called the velocity covariance tensor. Diagonal elements are the velocity variances, $\sigma_{u}^{2} \equiv \overline{u^{\prime 2}}$ (etc.), where σ_{u} is the standard deviation of u

Reynolds-averaging the gov'ning equations: example, the heat eqn

- Let's start with an equation for conservation of energy. To keep life simple, let's unsaturated assume a dry system and that the motion is adiabatic). Then

$$
\frac{D \theta}{D t} \equiv \frac{\partial \theta}{\partial t}+\vec{u} \cdot \nabla \theta=0
$$

and no radiative flux convergence

- Let's further assume the velocity is non-divergent, $\nabla \cdot \vec{u}=0$. Then since $\nabla \cdot(\vec{u} \theta)=\vec{u} \cdot \nabla \theta+\theta \nabla \cdot \vec{u}=\vec{u} \cdot \nabla \theta$ we can put the heat equation in "flux form" as

$$
\frac{D \theta}{D t} \equiv \frac{\partial \theta}{\partial t}+\nabla \cdot\left(\underline{\vec{u} \theta)}=\frac{\partial \theta}{\partial t}+\frac{\partial u \theta}{\partial x}+\frac{\partial v \theta}{\partial y}+\frac{\partial w \theta}{\partial z}=0\right.
$$

"kinematicytiux of potential temp."

- Now apply the Reynolds averaging rules:
convective

$$
\frac{\partial \bar{\theta}}{\partial t}+\frac{\partial \overline{u \theta}}{\partial x}+\frac{\partial \overline{v \theta}}{\partial y}+\frac{\partial \overline{w \theta}}{\partial z}=0
$$

where (e.g.) $\overline{w \theta} \equiv \bar{\omega} \bar{\theta}+\overline{\omega^{\prime} \theta^{\prime}}$

Reynolds-averaging the gov'ning equations: example, the heat eqn

- Expand each product,

$$
\frac{\partial \bar{\theta}}{\partial t}+\frac{\partial}{\partial x}\left[\bar{u} \bar{\theta}+\overline{u^{\prime} \theta^{\prime}}\right]+\frac{\partial}{\partial y}\left[\bar{v} \bar{\theta}+\overline{v^{\prime} \theta^{\prime}}\right]+\frac{\partial}{\partial z}\left[\bar{w} \bar{\theta}+\overline{w^{\prime} \theta^{\prime}}\right]=0
$$

- To make this look more familiar, convert back to "advection form" minus the

$$
\frac{D \bar{\theta}}{D t} \equiv \frac{\partial \bar{\theta}}{\partial t}+\bar{u} \frac{\partial \bar{\theta}}{\partial x}+\bar{v} \frac{\partial \bar{\theta}}{\partial y}+\bar{w} \frac{\partial \bar{\theta}}{\partial z}=-\frac{\partial \overline{u^{\prime} \theta^{\prime}}}{\partial x}-\frac{\partial \overline{v^{\prime} \theta^{\prime}}}{\partial y}-\frac{\partial \overline{w^{\prime} \theta^{\prime}}}{\partial z} \begin{aligned}
& \text { of the } \\
& \text { edd } \\
& \text { (uncesslued) } \\
& \text { heat flux }
\end{aligned}
$$

- Finally, we see the influence of the unresolved processes on resolved (mean) θ.

Gradients in the unresolved heat fluxes ("eddy heat flux divergenceconvergence") contribute to evolution of the volume-average temperature. The vertical eddy heat flux is particularly important, especially within the turbulent ABL

Reynolds-averaging the governing equations: example, u-mtm eqn

- Recall the instantaneous u-mm eqn is

$$
\frac{D u}{D t} \equiv \frac{\partial u}{\partial t}+\vec{u} \cdot \nabla u=\frac{-1}{\rho} \frac{\partial p}{\partial x}+f v+v \nabla^{2} u
$$

$$
-(-\nu \nabla u)
$$

- Neglecting molecular friction and adopting flux form (under the Boussinesq approximation, density treated as constant and velocity assumed non-divergent),

$$
\frac{\partial u}{\partial t}=\frac{-1}{\rho_{0}} \frac{\partial p}{\partial x}+f v-\nabla \cdot(\vec{u} u)=\frac{-1}{\rho_{0}} \frac{\partial p}{\partial x}+f v-\frac{\partial u u}{\partial x}-\frac{\partial v u}{\partial y}-\frac{\partial w u}{\partial z}
$$

- After applying the Reynolds average, and bringing advection terms to the Ihs,
friction due to unresolved motion

$$
\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}=\frac{-1}{\rho_{0}} \frac{\partial \bar{p}}{\partial x}+f \bar{v}-\frac{\partial \overline{u^{\prime} u^{\prime}}}{\partial x}-\frac{\partial \overline{v^{\prime} u^{\prime}}}{\partial y}-\frac{\partial \overline{w^{\prime} u^{\prime}}}{\partial z}
$$

- Gradients in the unresolved (or "eddy") momentum fluxes, i.e. Reynolds stress gradients, result in acceleration (or deceleration) of the resolved velocity "Rayleigh friction" replaces this with $-\alpha \bar{u}$ (a dumb model)
- Will illustrate only the so called "first-order" closure. Taking the vertical eddy flux of heat as an example, by analogy with Fourier's law of conduction we write

$$
\overline{w^{\prime} \theta^{\prime}}=-K_{h} \frac{\partial \bar{\theta}}{\partial z} \text { "eady diffusion model" or " } K \text {-theory" }
$$

"unresclued convective $\frac{\partial z}{}$ heat flux density"
where $K_{h}\left[\mathrm{~m}^{2} \mathrm{~s}^{-1}\right]$ is the "eddy diffusivity for heat" (very much larger than the
molecular thermal diffusivity). The eddy flux is "driven" by the vertical gradient in
the resolved (or "mean") potential temperature

- So what is the eddy heat flux in a neutral layer?
- This "parameterization" leaves us with the problem of how to prescribe K_{h}
- Some empiricism is inevitable
- Analogous closure for Reynolds stresses of form $\quad \overline{u^{\prime} w^{\prime}}=-K_{m}\left\lfloor\frac{\partial \bar{u}}{\partial z}+\frac{\partial \bar{w}}{\partial x}\right\rfloor$
where $K_{\mathrm{m}}\left[\mathrm{m}^{2} \mathrm{~s}^{-1}\right]$ is the "eddy viscosity" (often set equal to K_{h})
has the needed

Qualitative profile of the Ks mixing coeffts.

- Varies in proportion to z near ground
- Increases with increasing mean wind shear
- Increases with increasing thermal instability
- Becomes small at the top (δ) of the ABL

FOR TODAY'S EXERCISE ASSUME

$$
\rho \sim 1 \mathrm{kgm}^{-3}, \quad c_{p}=10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
$$

Then (e.g.) $\overline{\omega^{\prime} \theta^{\prime}}=0.3 \mathrm{Kms}^{-1} \rightarrow Q_{H}=300 \mathrm{Wm}^{-2}$
Under what circumstance might we find $\overline{U^{\prime} w^{\prime}}<0$ in the $A B L$?

