Exercise - heat budget of the ideal ABL

By averaging the equation $\frac{D \theta}{D t}=0$ we found

$$
\frac{\partial \bar{\theta}}{\partial t}+\bar{u} \frac{\partial \bar{\theta}}{\partial x}+\bar{v} \frac{\partial \bar{\theta}}{\partial y}+\bar{w} \frac{\partial \bar{\theta}}{\partial z}=-\frac{\partial \overline{u^{\prime} \theta^{\prime}}}{\partial x}-\frac{\partial \overline{v^{\prime} \theta^{\prime}}}{\partial y}-\frac{\partial \overline{w^{\prime} \theta^{\prime}}}{\partial z}
$$

Assuming horizontal uniformity (i.e. horizontal gradients vanish) and that $\bar{w}=0$, this simplifies to

$$
\frac{\partial \bar{\theta}}{\partial t}=-\frac{\partial \overline{w^{\prime} \theta^{\prime}}}{\partial z}
$$

Suppose the eddy heat flux decays linearly with height across the boundary layer

$$
\overline{w^{\prime} \theta^{\prime}}=\left(\overline{w^{\prime} \theta^{\prime}}\right)_{0}[1-z / \delta]
$$

Then (1) if the rate of warming is $2 \mathrm{~K} \mathrm{hr}^{-1}$ while the ABL depth is $\delta=500 \mathrm{~m}$, what is the value of the kinematic eddy heat flux density at the surface, $\left(\overline{w^{\prime} \theta^{\prime}}\right)_{0}$? And (2) if $Q_{H 0} \equiv \rho c_{p}\left(\overline{w^{\prime} \theta^{\prime}}\right)_{0}=300 \mathrm{Wm}^{-2}$ and $\delta=1750 \mathrm{~m}$, what is the rate of warming?

