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Motivation: 

● "forecasters do not rely exclusively on computer-generated guidance... they attempt to 

understand the factors likely to be responsible for the current and the next day's weather." 

(Durran & Snellman, 1987)

● Let U , L  be velocity and length scales characterizing synoptic scale motion. The 

(dimensionless) Rossby number

    gives the relative magnitudes of inertial and Coriolis force**

● Wikipedia: "Atmospheric and oceanographic flows take place over horizontal length scales 

which are very large compared to their vertical length scale, and so they can be described 

using the shallow water equations... The quasi-geostrophic equations are approximations 

to the shallow water equations in the limit of small Rossby number, so that inertial forces 

are an order of magnitude smaller than the Coriolis and pressure forces. If the Rossby 

number is equal to zero then we recover geostrophic flow."

Ro = U /L
f

( ∂
∂ t

+ u⃗⋅∇ ) u⃗ = ...−k̂ × f u⃗**

U2/L f U

Ro = U /L
f

= U 2/L
f U
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● on the synoptic scale, hydrostatic approx. adequate,                             or 

    and

● but                                                and 

● so (in effect) density controls the wind: "the mass field controls the  wind field"

● thus weather forecasting is largely synonymous with the ability to anticipate how the 

isobaric height field will develop 

● gas law, hypsometric eqn & thermal wind eqn also considered part of geostrophic theory

● one might consider this potentially a prognostic theory if one added

(unsaturated adiabatic flow of a cloudless atmosphere transparent to radiation)

● updating θ  allows to update T and then (via gas law) ρ

∂ p
∂ z

=− ρ g
∂ z
∂ p

=− α
g

psfc =∫
zsfc

∞

ρ g dz

V⃗ g =
g
f

( − ∂ z
∂ y

,
∂ z
∂ x

) ∂ω
∂ p

=− ∇ H⋅⃗V g ≡−
∂U g

∂ x
−

∂V g

∂ y

Dθ
Dt

= 0 = ∂θ
∂ t

+ V⃗ g⋅∇H θ + ω ∂θ
∂ p
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● the QG eqns predict the rates of change of the height, vertical velocity and vertical vorticity; 

they are inexact, but provide a useful interpretive theory

● the QG eqns are useful because in mid-latitude synoptic scale systems "the fields of 

vertical motion (ω) and geopotential tendency ( χ = g ∂Z/∂t ) are primarily determined by 

the distribution of vorticity advection and thermal advection."  **

● QG theory reduces the 5-variable primitive equations to a 1-equation system: all variables 

(u
g
, v

g
, ω, p, T ) can be obtained from the height field Z. Early NWP models exploited this.

(Assignment 2 is intended to convince you of this)

** on the synoptic scale, the atmosphere is considered to be in a state of "delicate imbalance"

● not quite in hydrostatic balance

● not quite in gradient balance



  

Derivation: 

● Rossby, Eady, Charney, Phillips and others: e.g. Charney 1949, On a Physical Basis for 

Numerical Prediction of Large-Scale Motions in the Atmosphere, J. Meteorol. 6, 371-385.

● emerges from scale analysis; or by an asymptotic expansion** of the governing eqns in the 

Rossby number                     , U and L being velocity and length scales characterizing 

synoptic scale motion

Ro=U /(f L)

Assumptions/Restrictions/Idealizations: 

● frictionless, extra-tropical flow

● hydrostatic approx.

● β-plane* approx., 

● decompose horiz. velocity field:                             where

● neglect vertical advection

● evaluate horizontal advection using the geostrophic component (only)

f=f ( y )=f 0+β y

f 0=2Ω sinϕ0

β=(∂ f /∂ y )ϕ0
=2Ωcosϕ0/R

V⃗=V⃗ g+V⃗ ag

β=(∂ f /∂ y )ϕ0
=2Ωcosϕ0/R

V⃗ g = (ug , vg) =
g
f 0

k̂ ×∇ Z
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*as distinct from the f-plane 
approximation, wherein f is 
assumed to be constant (AMS 
Glossary)

ω=0 + Ro ω(1) + Ro
2 ω(2) + Ro

3 ω(3) + ...** e.g.

x

y(Φ)
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Some key variables/features/definitions: 

∇H⋅V⃗ g =
∂ug

∂ x
+

∂ vg

∂ y
= g

f 0

(− ∂2 Z
∂ x ∂ y

+ ∂2 Z
∂ y ∂ x

) = 0

V⃗ g = g
f 0

k̂×∇ Z = g
f 0

(−∂Z
∂ y

,
∂ Z
∂ x

)

ζg = k̂⋅(∇H×V⃗ g ) =
∂ vg

∂ x
−

∂ug

∂ y
= g

f 0

( ∂
2 Z

∂ x2 + ∂2 Z

∂ y2 ) = g
f 0

∇H
2 Z

(only the ageostrophic wind 
component contributes to horiz. 
divergence)

(Poisson's eqn., easily solved numerically. Vertical vorticity equals Laplacian of the 
streamfunction. Z is "invertible" to give the vorticity and the wind)

Dg

Dt
≡ ∂

∂ t
+ V⃗ g⋅∇H material derivative following the geostrophic wind

η = ζg + f 0 + β y vertical component of the absolute vorticity

( Z , or gZ/f
0
, constitutes a "streamfunction")
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∂ζg

∂ t
+ V⃗ g⋅∇H (ζg+ f ) = f 0

∂ω
∂ p

where ∇H⋅V⃗ ag + ∂ω
∂ p

=0

Dgη
Dt

= −f 0 ∇H⋅V⃗ ag

Alternative statement:

absolute vorticity of a parcel varies along its path, as 
driven by the forcing term on the r.h.s., which represents 
horizontal convergence/divergence (or equivalently, 
vertical stretching of the column)

Vorticity advection signifies horizontal divergence, which is an indicator for  ∂ω/∂p ≠ 0 , and 
thus for non-zero ω (vertical motion)

PVA

● At the trough axis, local max in cyclonic relative 
vorticity and thus in abs. vorticity

● As a parcel moves downwind from the trough axis, its 
vorticity decreases, i.e. D

g
η /Dt <0, implying 

● Using the natural coords, value of                      is 
positive ("PVA")

∇⋅V⃗ ag > 0

− v
∂η
∂ s

height
vorticity

(ω =− ρ g w)
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[∇H
2 +

f 0
2

σ
∂2

∂ p2 ] ω =
f 0

σ
∂
∂ p

[V⃗ g⋅∇H η] +
Rd

σ p
∇H

2 [V⃗ g⋅∇H T ]

where                                                               is the "static stability" (normally positive and of 

order 10-6 in free atmos.)

σ = −
RdT

p
∂ ln θ
∂ p

[Pa−2 m2 s−2]

If σ→∞,                             (Laplace's eqn) and if ω=0 on boundaries, then ω=0 everywhere∇H
2 ω = 0

  height gradient of  
  vorticity advection

    Laplacian of temperature          
     advection

Recall, we define the advective "temperature advection rate" as

and similarly

AT =− V⃗ g⋅∇H T

∝ ∝

Aη =− V⃗ g⋅∇H η

Positive temperature advection (PTA)  means  A
T
 > 0, etc.

(3D) 
curvature 
operator
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In Cartesians, ∇H
2 ω = ∂2ω

∂ x2 + ∂2ω
∂ y2

J-1

J+1

J

I-1 I+1I

∂2ω
∂ x2 ≡

∂
∂ x

∂ω
∂ x

And recall, curvature is slope of slope

Evaluate ∂ω/∂x at red points by finite 
difference, using known values on the grid:

x

y

Similarly, evaluate ∂ω/∂y at magenta points by finite difference – and if ∆x = ∆y = ∆ , then

( ∂ω
∂ x )

I−1 /2,J

=
ω I , J−ωI−1,J

Δ x ( ∂ω
∂ x )

I+1/2,J

=
ωI+1,J−ωI , J

Δ x

( ∂2ω
∂ x2 )

I , J

=

ω I+1,J−ω I , J

Δ x
−

ω I , J−ωI−1, J

Δ x
Δ x

=
ωI+1,J + ωI−1,J − 2ωI , J

Δ x2

( ∂2ω
∂ x2 + ∂2ω

∂ y2 )
I , J

=
ωI+1,J + ω I−1,J + ωI , J +1 + ω I , J−1 − 4 ωI , J

Δ2

Laplacian is positive if 
central value smaller than 
average of its neighbours
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[ ∇H
2 +

f 0
2

σ
∂2

∂ p2 ] ω =
− f 0

σ
∂ Aη

∂ p
−

Rd

σ p
∇H

2 AT

● interpret the LHS as (3D) Laplacian of omega, visualized with gridlength ∆

● if RHS is positive, central value of omega is smaller than its neighbours – local updraft

● to make term A positive, we need A
η
 to decrease with increasing p, i.e. A

η
 to increase 

with increasing height – strong PVA aloft implies updraft

● to make term B positive, need A
T
 exceeding its neighbours – local "hot spot" for thermal 

advection implies updraft

[ ωnbrs−ω
(Δ2)/4 ] =

− f 0
σ

∂ Aη

∂ p
+

− Rd

σ p [ AT nbrs−AT

(Δ2)/4 ]

height gradient of 
vorticity advection

Laplacian of 
temperature advection

units are 
consistent

A B
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Wherever the pattern of the Q vector is convergent                        , 

omega is less positive (more negative) at P than in the neighbourhood... local ascent

σ
2 [∇H

2 +
f 0

2

σ
∂2

∂ p2 ] ω = − ∇H⋅Q⃗ (ω =− ρ g w)

Q⃗ = −R
p |∂T

∂n| [ k̂ ×
∂ V⃗ g

∂ s ] = −R
p |∂T

∂n| [−ŝ
∂ vg

∂ s
+ n̂

∂ug

∂ s ]

divergence of Q expressed 
in the natural coord. system 
aligned with isotherms

σ
2 [∇H

2 +
f 0

2

σ
∂2

∂ p2 ] ω = − ∂|Q⃗|
∂ s

−|Q⃗| ∂β
∂n

or

where

( ∇H ⋅Q⃗ < 0 )

σ
2 [ ωnbrs−ωP

(Δ2)/4 ] ≈ − ∇H⋅Q⃗

or, symbolically

If RHS of this eqn is positive 
(convergent Q vectors) expect 
locally negative ω (ascent)

Note: here giving Martin's Eqs (6.40, 
6.44). Holton's Eq 6.53 includes an extra 
term that vanishes in the f = const. 
approx.

"The Q vector can be obtained 
by evaluating the vectorial 
change of V

g
 along the isotherm 

(with cold air on the left), rotating 
this change vector by 90o 
clockwise, and multiplying the 
resulting vector by |∂T/∂n |." 
(Holton)



  

West of the low, v
g
 is northerly (negative), east of the low it is southerly (positive) so that 

∂v
g
/∂s >0; but u

g
 is zero on west and east sides). Thus only the term along s contributes, and 

the two negatives cancel. At the low, Q points eastward. Applying a parallel reasoning to the 
highs, we conclude Q points westward , resulting in convergent Q vectors on the east side of 
the low.

Q⃗ = −R
p |∂T

∂n| [ k̂ ×
∂ V⃗ g

∂ s ] = −R
p |∂T

∂n| [−ŝ
∂ vg

∂ s
+ n̂

∂ug

∂ s ]
Quasigeostrophic omega eqn – Q-vector formulation – example from Sanders & Hoskins   11

● Closed isobars 
of MSLP (solid)

● isotherms 
(dashed)

● geostrophic wind 
vectors

● Q vectors
 Modified from Sanders & Hoskins (1990; Weather & Forecasting Vol. 5, Fig. 3)

"The Q vector can be obtained by evaluating the vectorial change of V
g
 

along the isotherm (with cold air on the left), rotating this change vector by 
90o clockwise, and multiplying the resulting vector by |∂T/∂n |." (Holton)

σ
2 [ ωnbrs−ωP

(Δ2)/4 ] ≈ − ∇H⋅Q⃗

Here (u
g
,v

g
) are the 

components of V
g
 in a 

coordinate system 
aligned with isotherms



  

Q⃗ = −R
p |∂T

∂n| [ k̂ ×
∂ V⃗ g

∂ s ] = −R
p |∂T

∂n| [−ŝ
∂ vg

∂ s
+ n̂

∂ug

∂ s ]
Quasigeostrophic omega eqn – Q-vector formulation – example from Sanders & Hoskins   12

Another idealized example (upper trough & ridge). Note the absence of thermal advection 
(isotherms parallel to height contours). The v

g
 component of the geostrophic wind, i.e. the  

component normal to the isotherms, is zero everywhere. The u
g
 component, i.e. the 

component projected onto the (curvy) s axis is constant in magnitude, but its orientation 
changes; that change (across the trough) is given by the blue vector, which we rotate 90o 
clockwise to get Q (a westerly) in the trough. Parallel reasoning implies an easterly in the 
ridge

● Height contours 
(solid)

● isotherms 
(dashed)

● geostrophic wind 
vectors

● Q vectors

"The Q vector can be obtained by evaluating the vectorial change of V
g
 along the isotherm (with cold air on the left), 

rotating this change vector by 90o clockwise, and multiplying the resulting vector by |∂T/∂n |." (Holton)

Here (u
g
,v

g
) are the 

components of V
g
 in a 

coordinate system 
aligned with isotherms

Modified from Sanders & 
Hoskins (1990; Weather & 
Forecasting Vol. 5, Fig. 4)

1
2

1

2

3

3

2
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Q-vector 
convergence
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co-located with Q-vector 
convergence are 
high cloud and ascent 

Omega at 
500 hPa 
level


