Exercise – plot a wind profile (Project Prairie Grass run 57)

Project Prairie Grass was a tracer dispersion experiment performed over ideal uniform terrain; gas was released continuously from a point 0.46 m above ground, and the resulting 10-min average concentration field was measured on arcs at radii R = (50, 100, 200, 400, 800) m downwind. The table gives the wind profile measured during run 57, for which the Obukhov length was effectively infinite (i.e. the surface layer was neutrally stratified**). Plot this wind profile on log-linear graph paper, and determine the friction velocity graphically from the slope (rise-over-run) of a fit to the data.

z [m]	<i>U</i> [m s ⁻¹]
16	9.89
8	8.79
4	8.24
2	7.20
1	6.42
0.5	5.56
0.25	4.69

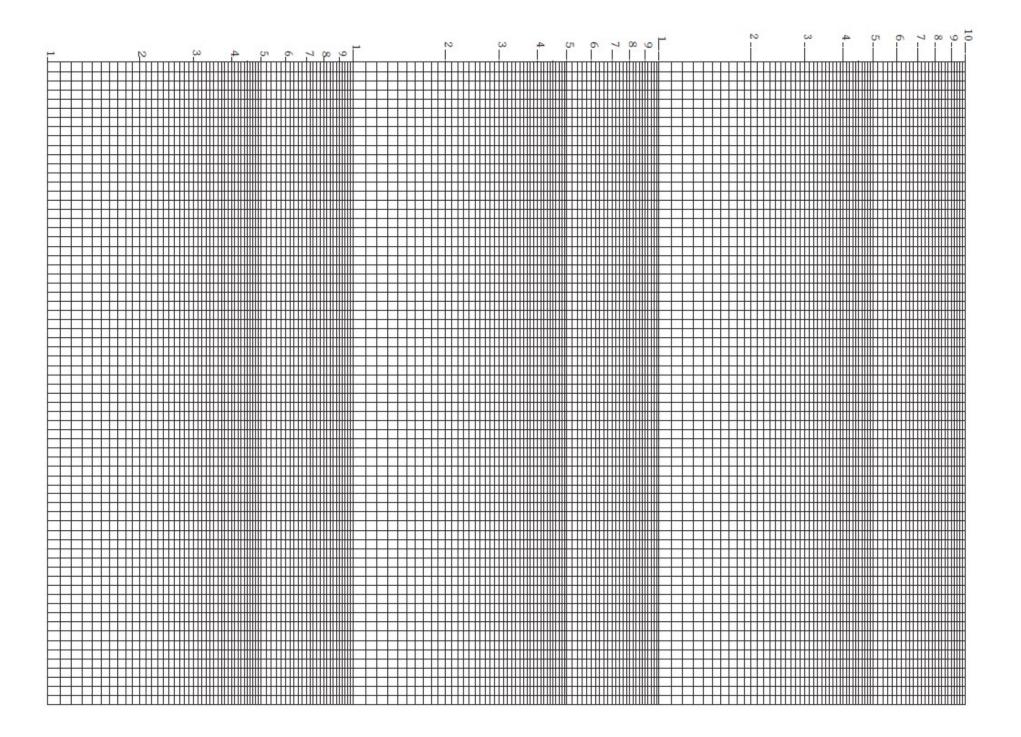
** in a neutral surface layer, the wind profile is this implies that $\frac{\Delta U}{\Delta \ln z} = \frac{u_*}{k}$

 $\frac{U}{u_*} = \frac{1}{k_{_{\parallel}}} \ln \frac{z}{z_{_0}}$ (where $k_{_{\parallel}}$ =0.4), and

eas372_plot windprfl.odp, JDW, EAS U. Alberta, Last. modif: 15 March 2017

Exercise – calculations relating to the neutral wind profile

Suppose a neutrally stratified ABL is blowing over an open plain whose surface aerodynamic roughness length is z_0 =0.05 m. The surface pressure and temperature are 980 hPa and


17°C. If measurements within the surface layer** give the values in the table then:

z [m]	<i>U</i> [m s ⁻¹]
15	4.28
3	3.07

- (1) what was the friction velocity u_{\star} ?
- (2) what was the drag τ on ground?
- (3) what was the wind speed at standard reporting height (10 m)?
- (4) what would be a plausible value for the standard deviation $\sigma_{_{\!\scriptscriptstyle W}}$ of vertical velocity?

** in a neutral surface layer, the wind profile is $\frac{U}{u_*} = \frac{1}{k_v} \ln \frac{z}{z_0} \quad \text{(where } k_v = 0.4\text{) , and}$ this implies that $\frac{\Delta U}{\Delta \ln z} = \frac{u_*}{k}$

(Again, to determine u_{\star} you *might* use log-linear graph paper; but it can also be done without plotting the data)

