Accepted Manuscript

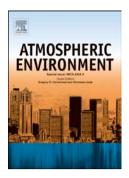
Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the winter validation tracer study dataset

Arthur S. Rood

PII: \$1352-2310(14)00150-2

DOI: 10.1016/j.atmosenv.2014.02.054

Reference: AEA 12804


To appear in: Atmospheric Environment

Received Date: 28 August 2013

Revised Date: 20 February 2014 Accepted Date: 24 February 2014

Please cite this article as: Rood, A.S., Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the winter validation tracer study dataset, *Atmospheric Environment* (2014), doi: 10.1016/j.atmosenv.2014.02.054.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- Steady-state and Lagrangian puff models compared.
- SF₆ tracer data at 140 samplers in concentric rings 8- and 16-km from release point.
- Paired and unparied 1- and 9-hour average concentrations performance objectives.
- Puff models showed the lower bias and variance and higher correlation
- Steady-state models were less likely to underpredict concentrations

PERFORMANCE EVALUATION OF AERMOD, CALPUFF, AND
LEGACY AIR DISPERSION MODELS USING THE WINTER
VALIDATION TRACER STUDY DATASET

Arthur S. Rood*

* Corresponding author, K-Spar Inc.,4835 W. Foxtrail Lane, Idaho Falls, Idaho 83402, Phone: 208 528-0670, asr@kspar.com

1	1	
-		
•	•	

ABSTRACT

The performance of the steady-state air dispersion models AERMOD and Industrial Source Complex 2
(ISC2), and Lagrangian puff models CALPUFF and RATCHET were evaluated using the Winter
Validation Tracer Study dataset. The Winter Validation Tracer Study was performed in February 1991 at
the former Rocky Flats Environmental Technology Site near Denver, Colorado. Twelve, 11-hour tests
were conducted where a conservative tracer was released and measured hourly at 140 samplers in
concentric rings 8 km and 16 km from the release point. Performance objectives were unpaired maximum
one- and nine-hour average concentration, location of plume maximum, plume impact area, arc-integrated
concentration, unpaired nine-hour average concentration, and paired ensemble means. Performance
objectives were aimed at addressing regulatory compliance, and dose reconstruction assessment
questions. The objective of regulatory compliance is not to underestimate maximum concentrations
whereas for dose reconstruction, the objective is an unbiased estimate of concentration in space and time.
Performance measures included the fractional bias, normalized mean square error, geometric mean,
geometric mean variance, correlation coefficient, and fraction of observations within a factor of two. The
Lagrangian puff models tended to exhibit the smallest variance, highest correlation, and highest number
of predictions within a factor of two compared to the steady-state models at both the 8-km and 16-km
distance. Maximum one- and nine-hour average concentrations were less likely to be under-predicted by
the steady-state models compared to the Lagrangian puff models. The characteristic of the steady-state
models not to under-predict maximum concentrations make them well suited for regulatory compliance
demonstration, whereas the Lagrangian puff models are better suited for dose reconstruction and long
range transport.
Keywords: air dispersion models, CALPUFF, AERMOD, validation, tracer

1. INTRODUCTION

The steady-state model AERMOD and Lagrangian puff model CALPUFF are the U.S.
Environmental Protection Agency (EPA) preferred models for demonstrating regulatory compliance in
the near field (< 50 km) and far field (>50 km), respectively. The CALPUFF model has also been used in
non-regulatory retrospective studies of radiation dose in the near field (Rood et al. 2008) and far field
environments (Grogan et al. 2007). Demonstration of regulatory compliance and accident consequence
analysis are generally prospective assessments, whereas dose reconstruction and epidemiological studies
are generally retrospective in nature. The assessment questions for the prospective and retrospective
analyses are fundamentally different and require different model performance objectives.
For the prospective analysis, the assessment question is whether air emissions will exceed ambient
air quality standards, or result in impacts that are unacceptable. This assessment question can initially be
addressed using conservative assumptions and simple models. It may not be critical to accurately estimate
temporal and spatial variations in concentration, as long as the estimated impacts do not exceed the
standards within a safety margin of error. More detailed model applications may be required if simple
models cannot demonstrate that regulatory standards are achieved.
For a retrospective assessment, the assessment question is an unbiased estimate of the temporal and
spatial distribution of concentration and deposition. Examples of a retrospective analysis include the dose
reconstructions performed at U.S. Department of Energy Facilities (Farris et al. 1994; Till et al. 2000,
2002; Rood et al. 2002) and other special studies (Rood et al. 2008; Grogan et al. 2007). Simple models
may be used in initial scoping calculations. However, ultimately an unbiased estimate of the temporal and
spatial distribution of air concentration and deposition with estimated uncertainty is desired.
The purpose of this paper is to examine the performance of AERMOD, CALPUFF, and two legacy
models using the Winter Validation Tracer Study (WVTS) dataset conducted in February 1991 at the
former Rocky Flats Environmental Technology Site (RFETS). Performance objectives were tailored
toward addressing the assessment questions posed by the prospective and retrospective analysis. Two

60	legacy models, Industrial Source Complex Short Term Version 2 (ISC2) (EPA 1992) and Regional
61	Atmospheric Transport Code for Hanford Emission Tracking (RATCHET) (Ramsdell et al. 1994), were
62	included in the evaluation because the formulations of these models are currently used in radiological
63	assessment codes (EPA 2007; Chanin et al. 1998; Ramsdell et al. 2010). Model simulations and
64	performance evaluation of ISC2 using the WVTS was originally reported in Haugen and Fontino (1993).
65	Performance evaluation of RATCHET using the WVTS dataset was originally reported in Rood (1999)
66	and Rood et al. (1999). Model-predicted concentrations for ISC2 and RATCHET were taken from
67	Haugen and Fontino (1993) and Rood (1999), respectively, and were used without modification.
68	A description of the tracer measurements and meteorological data is provided first, followed by
69	modeling protocol, performance objectives, and performance measures. Finally, the model performance
70	results, in terms of addressing the prospective and retrospective assessment questions, are discussed.
71 72	2. METHODS
73	Model performance was evaluated in terms of fundamental plume properties, paired ensemble mean
74	concentrations, and concentrations unpaired in space. The WVTS dataset and meteorological data are
75	presented first, followed by modeling protocol, performance objectives, and performance measures.
76	2.1. Winter Validation Tracer Study
77	The WVTS was conducted in February 1991 near the former RFETS located on the Front Range of
78	the Colorado Rocky Mountains about 25 km northwest of Denver (Brown 1991). The study consisted of
79	12 separate tests (Table 1). For each test, an inert tracer (sulfur hexafluoride [SF ₆]) was emitted
80	continuously for 11 hours from a 10-m high stack located on the east side of the main plant complex (Fig.
81	1). The main plant complex was located about 2.5 km east of the foothills on an alluvial plain ranging in
82	elevation from 1,750 m to 1,850 m above sea level. The primary purpose of the study was to gather data
83	for validation of emergency response atmospheric transport models. Samplers were arranged in
84	concentric circles 8-km and 16-km from the release point so as to capture any possible transport
85	trajectories. One-hour average air concentrations were then measured for the last nine hours of the release

at each of the 140 samplers. Six tests were performed under nighttime conditions, four under daytime
conditions, one under day-night transition, and one under night-day transition. A total of 108 hours of
data were recorded. Seventy-two samplers were distributed at the 8-km distance and 68 samplers at the
16-km distance. Sampler elevations ranged from about 1,600 m to 2,600 m above sea level. The study
domain is considered near field because the maximum distance to the samplers is <50 km.
Previous investigators (Haugen and Fontino 1993) used this data set in a performance evaluation of
the TRAC (Hodgin 1991) and ISC2 models. The electronic copy of this data set was obtained from
Haugen and Fontino (1993) for use in the model performance evaluation for the Historical Public
Exposures Studies at Rocky Flats (Rood 1999). These data included the observed hourly-average
concentrations for all 12 tests, the sampler ID numbers and locations, and the TRAC and ISC2 predicted
concentrations. The ISC2 results provided by Haugen were used in this paper without modification.
2.2. Meteorological Data
Meteorological data were recorded for every tracer test at the 10-m and 61-m level from the RFETS
61-m tower located 790 m west and 87 m south of the release point. Only data from the 10-m level were
used in the model simulations. Data were provided as 15-minute averages of wind speed and direction,
temperature, heat flux, and standard deviations of these parameters. Hourly averages of these data were
calculated using EPA protocol (EPA 2000). Mixing depth estimates for the ISC2 simulations were
derived from linear interpolation for each 15-minute period from the rawinsonde data taken every 12
hours at Denver Stapleton airport. No precipitation was measured during any of the 12 tests, and there
was no snow cover during February 1991.
Additional surface and upper air meteorological data were obtained from Denver Stapleton airport
located about 25 km southeast of the RFETS. Surface data included wind speed and direction, cloud
cover, and ceiling height and were used with the RFETS data to calculate stability class. The RATCHET
and CALPUFF models utilized the wind speed and direction measurements in their wind field
interpolation.

Surface observations from Denver Stapleton are strongly influenced by air movement within the Platte River Valley, which flows to the northeast from the city center. By contrast, Rocky Flats is more strongly influenced by its proximity to the foothills. Both locations are influenced by the diurnal pattern of upslope-downslope conditions that characterize the general air movement on the Colorado Front Range environs. Downslope conditions typically occur during the evening hours and are characterized by drainage flow of cooler surface air from the foothills and upper reaches of the Platte River Valley northeastward to the plains. Airflow at Rocky Flats is typically from the west-northwest, and converges with the flow from the south within the Platte River Valley in a broad zone 20 km to 30 km east-northeast of the RFETS (Lange, 1992). During daylight hours and after surface heating has eliminated the cooler surface layer, the downslope conditions cease. This is followed by a brief period of relatively calm winds, which in turn is followed by return of air up the valley or upslope conditions. Upslope conditions were weak to non-existent during the WVTS.

2.3. Atmospheric Transport Models and Protocol

A brief description of each of the models included in this study is presented along with the modeling protocol. Because the SF_6 tracer is an inert gas, all model simulations did not include deposition and plume depletion.

2.3.1. AERMOD

The American Meteorological Society and EPA developed the AERMOD modeling system (Cimorelli et al. 2004). Model development began in 1991 with the objective to incorporate current planetary boundary layer concepts into regulatory compliance models. Treatment of both surface and elevated point sources, area sources, and volume sources in a simple or complex terrain model domain are addressed in the model. It was intended as a replacement of the Industrial Source Complex Version 3 (ISC3) model. Currently, AERMOD is the EPA's preferred model for regulatory compliance demonstration for criteria pollutants in the near field (<50 km).

2.3.1.1. AERMOD Modeling Protocol

The modeling domain consisted of a A 46.2-km × 49.8-km region centered on the RFETS.

Meteorological data were the same used in the CALPUFF simulation and included surface and upper-air data from Denver Stapleton airport and onsite data from RFETS.

AERMOD and AERMET version 12345 were used in the model simulations. Special processing of AERMOD output was required because minimum model-simulation times are one-day, and nine-hour averaging times are not an option. Nine-hour average concentrations were calculated by inputting the tracer release rate for the last nine hours of the 11-hour tracer test and setting the release rate to zero for the remaining hours in the simulation. The maximum one-hour, and 12-hour average concentration at each of the samplers for a simulation period that encompassed each test was output. The nine-hour average concentration was calculated by multiplying the 12-hour average concentration by the ratio of 12/9.

2.3.2. CALPUFF

The CALPUFF modeling system (Scire et al. 2002) is a non-steady-state Lagrangian puff model that simulates pollutant transport, transformation, and deposition in a three-dimensional spatially and temporally variable wind field. CALPUFF can be applied on local and regional scales. The modeling system is composed of three primary modules: CALMET, CALPUFF, and CALPOST and collectively these are referred to as the CALPUFF modeling system.

The CALMET module is a meteorological model that generates a three-dimensional hourly wind field within a three-dimensional gridded modeling domain. The CALPUFF module uses the CALMET-generated wind field and micrometeorological parameters to advect and disperse "puffs". The CALPOST module reads the CALPUFF concentration and deposition flux files and produces time-averaged concentration and deposition output along with visibility impacts.

158	CALPUFF is currently the EPA preferred long-range (>50 km) dispersion model for demonstration
159	of compliance with Prevention of Significant Deterioration increment levels and National Ambient Air
160	Quality Standards in Class I areas.
161	2.3.2.1. CALPUFF Modeling Protocol
162	A 45.2-km \times 43.6-km model domain having a grid spacing of 400 m (113 \times 109 grid cells) was
163	established (Fig. 1). It was centered approximately on the WVTS release point and included the Platte
164	River Valley in the southeast corner. Vertical discretization consisted of eight layers 20 m, 40 m, 60 m,
165	100 m, 200 m, 400 m, 800 m, 1,200 m, and 1,800 m above land surface.
166	For the CALMET simulations, EPA-Federal-Land-Manager-recommended parameter values (Fox
167	2009) or CALMET default values were generally used where applicable. The model parameters BIAS,
168	RMAX1, RMAX2, TERRAD, R1, and R2 were chosen on a site-specific basis. The BIAS parameter
169	assigns weights to the surface and upper-air stations data for each vertical layer. Surface data were given
170	100% of the weight (BIAS = 1) in the first layer with zero weight in the last two vertical layers (BIAS =
171	1). Equal weight was assigned to the fourth layer (BIAS = 0) with a gradation of weights between the
172	lower and upper for the remaining layers.
173	The RMAX1 and RMAX2 parameters define the maximum radius of influence for surface and upper
174	data, respectively, over land surfaces. To incorporate the influence of flow in the Platte River Valley as
175	represented by the surface data at Denver Stapleton airport, a value of 32 km for RMAX1 was used. The
176	RMAX2 value serves the same purpose as RMAX1 but is used for upper-air data. A value of 100 km was
177	selected for the RMAX2 parameter
178	The TERRAD parameter defines the radius of influence of terrain features. A TERRAD value of 7
179	km was used so that the terrain influence of the foothills encompassed RFETS. The parameters R1 and R2
180	are the distance from an observation where the observation and the initial guess field are equally weighted
181	for surface and layers aloft, respectively. A value of 17 km and 56 km were chosen for R1 and R2,
182	respectively.

183	The CALPUFF runs were performed using dispersion coefficients calculated from
184	micrometeorological variables (MDISP = 2), and the simple CALPUFF-type terrain adjustment algorithm
185	(MCTADJ = 2). The remaining parameters were CALPUFF defaults. CALPUFF Version 5.8, Level
186	070623, and CALMET Version 5.8, Level 060811, were used in the model simulations.
187	2.3.3. Industrial Source Complex Short Term Version 2 (ISC2)
188	The ISC2 model is an augmented steady-state Gaussian plume model primarily used to demonstrate
189	regulatory compliance with criteria pollutants emitted by industrial facilities. It was replaced by ISC
190	Version 3 and was the EPA preferred model until the promulgation of AERMOD in December of 2005.
191	The model was included in the evaluation because straight-line Gaussian plume models form the basis of
192	the CAP88 (EPA 2007) model for demonstration of compliance with the Clean Air Act, and of the
193	MACCS2 code (Chanin et al. 1998) for reactor accident consequence analysis.
194	2.3.3.1. ISC2 Modeling Protocol
195	The ISC2 simulations were performed by Haugen and Fontino (1993) using 15-minute
196	meteorological data from the 10-m level taken at the RFETS and mixing depth estimated from the
197	rawinsonde data at Denver Stapleton airport. Four ISC2 runs were performed for each hour of simulation
198	using the four, 15-minute average data from the Rocky Flats meteorological station. The results from the
199	four simulations were averaged to provide hourly-average concentrations at each of the sampler locations
200	These hourly concentrations were then averaged across each test by Rood (1999) to provide nine-hour
201	average concentrations at each sampler.
202	The performance evaluation of this model was originally reported in Rood (1999) and Rood et al.
203	(1999). The results presented here are based on the original data using slightly different performance
204	measures.

2.3.4. RATCHET

The Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET) (Ramsdell et al. 1994) is a Lagrangian puff model developed by Pacific Northwest Laboratories for the Hanford Dose Reconstruction Project (Farris et al. 1994). Its primary purpose was to estimate transport and deposition of ¹³¹I released from the Hanford facility across a 194,250 km² model domain located in eastern Washington State. The model includes a surface wind field interpolator that allows incorporation of multiple surface meteorological stations into a model simulation. Upper-air data were not considered in the model. Terrain complexities were not explicitly treated, but are implicitly represented by using multiple meteorological surface stations that reflect major topographical features. Surface roughness features are spatially variable across the model domain. Diffusion coefficients are estimated from statistics of atmospheric turbulence that are inferred from estimates of atmospheric stability, surface roughness length, and the Monin Obukhov length. The current radiological assessment models, RASCAL (Ramsdell et al. 2010) and GENII (Napier, 2009), employ the RATCHET air dispersion model.

2.3.4.1. RATCHET Modeling Protocol

Model simulations with RATCHET were performed by the author (Rood et al. 1999) as part of Phase II of the Historical Public Exposures at Rocky Flats (Till et al. 2002). Hourly-average meteorological data at the 10-m level from the Rocky Flats plant and Denver Stapleton airport were used in the model simulations. A 37-km \times 37-km model domain centered on the RFETS with 500-m grid spacing was established. RATCHET does not allow discrete receptors, and therefore, calculated concentrations were extracted from the grid node nearest the sampler. Surface roughness lengths (z_0) ranged from 2-m in the foothills to 0.05-m in the farmland east of the RFETS.

2.4. Performance Objectives

Performance objectives consisted of four fundamental plume properties and a paired and unpaired comparison of individual samplers. The four fundamental plume properties were maximum concentration, location of the plume maximum, plume width, and arc-integrated concentration. An additional objective

of the maximum one-hour average concentration unpaired in space and time was also inclu	ıded to provide
insight into model performance for short-term maximum concentrations. Descriptions of e	ach modeling
objective follows.	

2.4.1. Maximum Hourly and Nine-Hour Average Concentration and Plume Maximum Location

This modeling objective compared the predicted and observed maximum one-hour and nine-hour average concentration measured at a sampler during the nine-hour test period at either the 8-km or 16-km distance from the release point. The predicted maximum concentration was not paired in space, and also unpaired in time for the maximum-hourly average concentration. The nine-hour average concentration was determined by a simple arithmetic average of the nine, one-hour average concentrations. Sampler data that were missing were not included when computing the predicted or observed average concentration.

The plume maximum location was only computed for the nine-hour average concentration and was quantified in terms of the absolute value of angular difference between the predicted and observed location of the plume maximum.

2.4.2. Plume Width

The plume width objective evaluated the predicted impact area of the plume. Each sampler was assigned an arc length equal to the arc length between the midpoints of the sampler and each of its adjacent samplers. The plume width was sum of the arc lengths of samplers that had a concentration greater than zero, or in the case of the observed values, a concentration greater the the minimum detectable concentration.

2.4.3. Arc-Integrated Concentration

The arc-integrated concentration evaluated the plume mass at the 8-km and 16-km distance. The arc-integrated concentration is the sum of the product of the sampler arc lengths as defined in Section 2.4.2 and the nine-hour average predicted or observed concentration.

254	2.4.4. Unpaired Time-Averaged Concentration
255	This modeling objective compared the ranked predicted and observed time-averaged (nine-hour)
256	concentrations. Only predicted and observed concentrations that met the selection criteria stated in
257	Section 2.6 were included. Samples were blocked into those performed at night (Tests 1, 2, 3, 4, 10, and
258	11), those performed during the day (Tests 6, 7, 9, and 12), and those performed during transition periods
259	(Tests 5 and 8). Sample blocking is used in bootstrap resampling to avoid block-to-block variance (Chang
260	and Hanna 2005).
261	2.4.5. Paired Ensemble Means (ASTM Procedure)
262	The American Society for Testing and Materials (ASTM) proposed a procedure for evaluation of
263	models, recognizing that model predictions are ensemble-mean predictions, while observations
264	correspond to realizations of ensembles (ASTM 2000). An ensemble is defined as a set of experiments
265	having fixed external conditions, such as meteorological conditions and downwind distance. In the
266	WVTS, fixed external conditions were the distance to the sampling arc and meteorological conditions. In
267	general, repeatable diurnal flow and stability regimes are established during nighttime, daytime, and day-
268	night transitional periods along the Colorado Front Range. Thus, averages across the tests representing
269	these similar conditions would approximate ensemble means to compare with model predictions for the
270	same period.
271	Predictions and observations were grouped into three blocks consisting of nighttime (six tests),
272	daytime (four tests), and transition period (two tests). Average concentrations were calculated across all
273	tests in the block for each sampler, and performance statistics were calculated separately for each block.
274	2.5. Performance Measures
275	Several simplified measures were used to evaluate model performance (Cox and Tikvart 1990; Weil
276	et al. 1992). These measures were the fractional bias (FB) and normalized mean square error (NMSE).

277

Fractional bias is given by

$$FB = \frac{2(\overline{C}_o - \overline{C}_p)}{\overline{C}_o + \overline{C}_p} \tag{1}$$

279 where C_p and C_o are the predicted and observed concentrations, respectively. Overbars indicate averages 280 over the sample. The *NMSE* given by

$$NMSE = \frac{\overline{(C_o - C_p)^2}}{\overline{C}_o \overline{C}_p}$$
 (2)

The FB is a measure of mean bias. A FB of 0.6 is equivalent to model under-prediction by about a factor of two. A negative value indicates model over-prediction. The NMSE is a measure of variance, and a value of 1.0 indicates that a typical difference between predictions and observations is approximately equal to the mean. The NMSE and FB are appropriate when the typical difference between the predictions and observations are approximately a factor of two (Hanna et al. 1991) and the range of predictions and observations in the dataset is small (i.e., less than a factor of two). This was not the case in this study where ratios of model predictions to observations often ranged from 0.01 to 100, and within a data set, the predicted and observed concentrations ranged from the zero to \sim 10,000 ng m⁻³. In these cases a log-transformed measure of model bias and variance is more appropriate because it provides a more balanced approach (Hanna et al. 1991). The log-transformed measures described in Hanna et al. (1991) are the geometric mean bias (MG) and the geometric mean variance (VG) and are defined by

293
$$MG = \exp\left(\overline{\ln C_o} - \overline{\ln C_p}\right) = \exp\left(\overline{\ln \frac{C_o}{C_p}}\right)$$
 (3)

$$VG = \exp\left[\left(\ln C_o - \ln C_p\right)^2\right] \tag{4}$$

Geometric mean bias values of 0.5 and 2.0 indicate a factor of two over-prediction and under-prediction, respectively. A *VG* value of 1.6 indicates about a factor of two difference between predicted and observed data pairs.

A more easily understood log-transformed quantity that is related to the MG and VG is the geometric mean (GM) and geometric standard deviation (GSD) of the predicted-to-observed ratio (C_p/C_o) . The GM and GSD are given by

$$GM = \exp\left(\ln\frac{C_p}{C_o}\right) \tag{5}$$

$$GSD = \exp\left[\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left(\ln\frac{C_{p_i}}{C_{o_i}} - \ln\frac{C_p}{C_o}\right)^2}\right]$$
 (6)

where *n* = the sample size. Because the *MG* is simply the inverse of the *GM*, only the *GM* is reported. A perfect model would have *FB* and *NMSE* values of 0, and *GM*, *GSD*, and *VG* values of 1.0. With the exception of the plume width and location of plume maximum performance objectives, the log-transformed performance measures are considered more appropriate than the *FB* and *NMSE*, and thus only the log-transformed measures are reported. The location of plume maximum does not lend itself to the above performance measures, mainly because the objective considered the absolute angular difference between the predicted and observed location of maximum. For this performance objective, the mean difference, standard deviation of the mean (i.e., standard error), and the minimum and maximum differences are reported. Because differences between predicted and observed values and the range of predictions and observations were less than about a factor of two, the *FB* and *NMSE* were considered more appropriate for the plume width objective.

In addition to the above measures, the correlation coefficient (*r*) between predicted and observed values and the number of predictions within a factor of two of the observations were also reported. The correlation coefficient was determined using least-squares linear regression and log-transformed data except for the plume width performance objective. Scatter plots were also included as visual measures of performance for the paired ensemble means and unpaired time-averaged concentration modeling objectives.

Confidence intervals were estimated for each of the performance measures using the bootstrap methodology described in BOOT software (Hanna et al. 1991; Chang and Hanna 2005). Confidence intervals were used to determine if the estimated performance measure was significantly different than its optimum value and whether a statistically significant difference existed between the performance measures for each model. Confidence interval estimates were based on the cumulative density function generated from 1000 bootstrap samples.

2.6. Selection Criteria

The observed data set only reported nonzero hourly average concentrations greater than the minimum detectable sampler concentration (*mdc*) of 33 ng m⁻³. Measured concentrations below this value were reported as zero. A sampler that had only one hour of data (in the nine-hour measurement period) greater than the *mdc* would have a nine-hour average concentration of 3.7 ng m⁻³ (33 ng m⁻³/9). This value represents the nine-hour time-averaged *mdc* for a sampler.

For the paired ensemble means performance objective, the dataset was based on the union of the predicted and observed concentrations. The *mdc* was substituted for predicted concentrations that were less than the *mdc* if the paired observed concentration was greater than zero. Likewise, the *mdc* was substituted for observed concentrations less than the *mdc* if the paired predicted concentration was greater than zero. Predicted and observed pairs that were both zero were omitted from the analysis.

For the unpaired analysis only predicted *and* observed concentration pairs greater than the *mdc* were considered. Samplers missing all nine hours of data were eliminated from the data set.

3. RESULTS

The paired ensemble means and unpaired scatter plots are perhaps the most illustrative in terms of summarizing model performance qualitatively (Figs. 2, 3, 4 and 5). In general, the highest predicted and observed concentrations were during nighttime and transition period tests and the lowest during daytime tests.

344	The paired ensemble mean scatter plot at the 8-km distance (Fig. 2) showed the transition period tests
345	as having the highest observed concentrations, some exceeding 8000 ng m ⁻³ . Nighttime tests had
346	maximum observed concentrations between 3000 and 4000 ng m ⁻³ . As expected, daytime tests had the
347	lowest observed maximum concentrations, the maximum being slightly less than 600 ng m ⁻³ . All models
348	performed poorly for the transition period tests, underestimating observed concentrations that were >1000
349	ng m ⁻³ . In general, the puff models exhibited better correlation to the observations for daytime and
350	nighttime tests and concentrations that were >100 ng m ⁻³ compared to the steady-state models.
351	At the 16-km distance (Fig. 3) the nighttime period tests had the highest observed concentrations, (~
352	3500 ng m ⁻³), followed by transition period tests (~ 1800 ng m ⁻³). Daytime tests had maximum observed
353	concentrations that were ~70 ng m ⁻³ . The puff models exhibited better correlation, less variability, and a
354	greater number of points within a factor of two of the observations compared to the steady state models
355	for nighttime tests and concentrations >100 ng m ⁻³ .
356	Scatter plots of the unpaired data at the 8-km distance (Fig. 4) showed that all models underestimated
357	transition period observed concentrations that were greater than 1000 ng m ⁻³ . Predicted concentrations
358	from RATCHET were within a factor of two of the observations for almost all the daytime tests and most
359	of the nighttime tests for the entire concentration range. Most of the ISC2 concentrations for daytime and
360	nighttime tests were within a factor of two of the observations for concentrations that were >100 ng m ⁻³ .
361	At the 16-km distance (Fig.5), scatter plots of the unpaired data were similar to those at the 8-km
362	distance, although CALPUFF underestimated almost all the concentrations for transition period tests by
363	more than a factor of two. The three highest observed concentrations were within a factor of two of the
364	corresponding AERMOD predicted concentrations. A similar result was found for ISC2, except the
365	highest observed nighttime concentration was underestimated by more than a factor of two. Observed
366	nighttime concentrations that were <100 ng m ⁻³ were overestimated by more than a factor of two by
367	RATCHET.

3.1. Maximum	One-Hour an	d Nine-Hour	Average	Concentration

smallest NMSE value.

Performance measure results for the maximum one-hour average concentration modeling objective (Table 2) indicate a strong positive bias for the steady-state models, especially AERMOD, and nearly no bias for puff models RATCHET and CALPUFF (GM confidence interval included 1.0). The positive bias for the steady-state models was greater at the 16-km distance. Ninety-two percent of the ISC2-estimated maximum one-hour average concentrations and 83% of the AERMOD values had predicted-to-observed ratios of 0.95 or higher. In contrast, only 50% of the CALPUFF- and RATCHET-estimated maximum one-hour average concentrations had a predicted- to-observed ratio greater than 0.95.

Predicted maximum nine-hour average concentrations (Table 3) showed a similar trend to those of the maximum hourly-average concentrations. That is, the steady-state models exhibited positive bias, while the Lagrangian puff models exhibited negative bias. However, the GM confidence interval included 1.0 for all models. Measures of variance were generally lower for the puff models and correlation coefficients were higher compared to the steady state models.

Measures of bias among the steady state models were significantly different from those of the puff models (Table 4). None of the model performance measures for CALPUFF and RATCHET were significantly different from one another.

3.2. Plume Maximum Location, Plume Width, and Arc-Integrated Concentration

Plume maximum location at the 8-km distance (Table 5) showed that the mean deviation was smallest for AERMOD and RATCHET (14 degrees) and greatest for CALPUFF and ISC2 (26 and 24 degrees respectively). Based on a t-test difference of the means, the mean deviation for CALPUFF and ISC2 was significantly different from the mean deviation for AERMOD and RATCHET (*P*>0.005).

Plume width performance measures at the 8-km distance (Table 5) showed that ISC2 and CALPUFF underestimated plume width while RATCHET and AERMOD overestimated plume width. Although the FB confidence interval for CALPUFF included the optimum value of zero and CALPUFF had the

395	Arc-integrated concentration at the 8-km distance showed little bias for the steady state models (GM
396	confidence interval included 1.0) and a negative bias for the puff models. However, only 50% of the
397	predictions were within a factor of two for the steady-state models while over 90% of the predictions
398	were within a factor of two for the puff models.
399	Plume maximum location at the 16-km distance (Table 6) showed that the mean deviation was
400	smallest for CALPUFF and RATCHET (26 and 24 degrees respectively) and greatest for ISC2 and
401	AERMOD (34 and 36 degrees respectively). Based on a t-test difference of the means, the differences
402	between the steady state and puff models were significant at the 99% level (0.01< <i>P</i> <0.005).
403	Plume width performance measures at the 16-km distance (Table 6) showed that ISC2
404	underestimated plume width while RATCHET and AERMOD overestimated plume width. The
405	CALPUFF FB was not significantly different from zero.
406	Arc-integrated concentration at the 16-km distance showed positive bias for ISC2. The GM
407	confidence interval for the other models included the optimum value of 1.0. Puff models showed a greater
408	percentage of predictions within a factor of two of the observations.
409	Significant differences among models (Table 7) were noted for the bias performance measures and
410	the correlation coefficients.
411	3.3. Unpaired Nine-Hour Average Concentration
412	The performance measure results at the 8-km distance for the unpaired nine-hour average
413	concentration (Table 8) indicated a negative bias in predicted concentrations for AERMOD and
414	CALPUFF, slight negative bias for ISC2, and positive bias for RATCHET. ISC2 and RATCHET also
415	had the smallest variance, highest correlation coefficient, and highest percentage of predictions within a
416	factor of two of the observations.
417	At the 16-km distance, ISC2 and RATCHET exhibited positive bias, AERMOD exhibited negative
418	bias, and CALPUFF nearly no bias. RATCHET and ISC2 had the highest correlation coefficients and
419	CALPUFF and RATCHET had the highest percentage of predictions within a factor of two of the
420	observations.

All models were biased low for the transition period ensemble means at both the 8 and 16-km distances, and exhibited large variances, although the variance measures for CALPUFF and RATCHET were considerable smaller than those for ISC2 and AERMOD. Puff model *VG* and *r* values were significantly different than steady-state models for nighttime tests at the 16-km distance (Table 12).

interval encompassed 1.0 at the 16-km distance.

4. DISCUSSION

Model performance is judged in terms of the assessment question that the model is intended to address. As stated in the introduction, the assessment questions are different for a prospective regulatory compliance calculation compared to a retrospective dose reconstruction.

In terms of the prospective assessment where it is important that regulatory limits are not exceeded
(i.e., highest concentrations are not underestimated), the steady-state models were less likely to
underestimate maximum one- and nine-hour average concentrations compared to the Lagrangian puff
models. However, this result is not only due to differences in model formulation, but also the model
parameters such as diffusion coefficients. The unpaired scatter plots (Fig. 4 and 5) showed that the
maximum observed concentration across all tests was not underestimated by AERMOD at both the 8 and
and 16-km distance, although the time and place of the observed maximum was not the same as the
predicted maximum.
In terms of the retrospective assessment where the objective is an unbiased estimate of the
concentration in space and time, the Lagrangian puffs models showed overall better performance,
especially at the 16-km distance. In most cases, the Lagrangian puff models for the paired ensemble
means exhibited lower variance higher correlation to observed values and a higher percentage of
observations within a factor of two of the observations compared to steady-state models.
In terms of the four fundamental plume properties, the steady-state models tended to overestimate
maximum concentrations but provide unbiased estimates of the plume mass at the 8-km distance and the
16-km distance for ISC2. Puff models tended to slightly underestimate plume maximums, but were better
at locating the plume maximum at the 16-km distance. CALPUFF appeared to more accurately estimate
the plume impact region, whereas AERMOD and RATCHET tended to overestimate it and ISC2
underestimated it.
The WVTS consists of only 108 hours of measurements taken during February 1991 and are not
representative of annual average concentrations. However, the high sampler density resulted in the
likelihood that the maximum concentration was detected at either the 8-km or 16-km sampling distance.
Moreover, the tests were conducted during the wintertime when stable dispersion conditions would likely
result in the maximum one- or eight-hour average concentration over the course of a year. Achieving
compliance with National Ambient Air Quality Standards typically is limited by the short-term average

concentration limits. Therefore, these results have relevance in terms of model performance for short-term averages over the period of a year.

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

5. CONCLUSIONS

No one single model consistently out-performed the others in all performance objectives or measures and the state-of the art models (CALPUFF and AERMOD) did not exhibit superior performance in all performance objectives to the legacy models (ISC2 and RATCHET). Lagrangian puff models generally exhibited smaller variances, higher correlation, and higher percentage of predictions within a factor of two compared to the steady-state models at these distances. The conceptual framework of a Lagrangian puff model is better suited for long range transport where winds vary spatially across the model domain. Hence, Lagrangian puff models may be preferable for dose reconstruction where model domains can be large and where the assessment question is an unbiased estimate of concentration in time and space. However, model choice depends on site-specific considerations and the assessment questions to be addressed, and therefore no categorical statement can be made about the performance of one type of model over the other for a specific application. The steady-state models generally did not underestimate the high-end concentrations at the distances studied, and therefore provide a sound basis for regulatory compliance modeling. Based on the overall

performance of ISC2, assessment models that rely on the Gaussian plume model are not necessarily inferior to the current state-of-the-art models in terms of meeting regulatory performance objectives.

There was a general tendency for the steady-state models to predict relatively higher concentrations at the 16-km distance compared to the 8-km distance. This effect is important because it manifests itself at substantially shorter distances (16 km) than what is defined by the EPA as the near-field environment (≤ 50 km). The EPA requires AERMOD for the near-field environment for demonstration of regulatory compliance, unless compelling reasons are provided to justify the use of an alternative model. Thus, estimated maximum hourly-average concentrations at distances >16 km are likely to be overestimated based on these results. Other investigators (Dresser and Huizer 2011) found AERMOD to underestimate

near-field maximum one- and three-hour average SO ₂ concentrations based on data from the Martins
Creek Power Plant. However, only eight samplers were used in the study and it is possible (if not likely)
that the true maximum concentration in the model domain was not captured. In the WVTS, it was less
likely that the maximum concentration within a sampling arc went undetected.
Finally, a compelling reason to use steady-state models for regulatory compliance demonstration is
the fact that they are simpler to run, require less user judgment, and are less prone to error than
Lagrangian puff models. The CALMET/CALPUFF model simulation in this paper required numerous
iterations using different values of RMAX1, RMAX2, and other parameters so that the wind field
matched what was expected. In a prospective analysis, it is unlikely tracer or other validation data would
be available to test model performance and adjust model parameters accordingly to improve model
performance. The need for consistency and assurance that estimated concentrations are not
underestimated are legitimate reasons for using steady-state models for regulatory compliance
determination.
Acknowledgments
This work was partially funded by Risk Assessment Corporation, Neeses South Carolina.

511	6. REFERENCES
512	ASTM (American Society for Testing and Materials), 2000. Standard guide for statistical evaluation of
513	atmospheric dispersion model performance. West Conshohocken, Pennsylvania: American Society
514	for Testing and Materials; Designation D 6589-00.
515	Brown, K.J., 1991. Rocky Flats 1990-91 winter validation tracer study. North American Weather
516	Consultants, Salt Lake City, Utah, Report AG91-19.
517	Chang J.C. and Hanna S.R, 2005. Technical descriptions and user's guide for the BOOT statistical model
518	evaluation software package, version 2.0.
519	Chanin D., Young M. L., and Randall J., 1998. Code manual for MACCS2. NUREG/CR-6613, U.S.
520	Nuclear Regulatory Commission, Washington, D.C.
521	Cimorelli, A.J., Perry, S.G., Venkatram, A., Weil, J.C., Paine, R.J., Wilson, R.B., Lee, R.F., Peters, W.D.,
522	Brode, R.W., and Paumier, J.O., 2005. AERMOD: Description of model formulation. EPA-454/R-
523	03-004, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.
524	Cox W.M., and Tikvart, J.A., 1990. A statistical procedure for determining the best performing air quality
525	simulation model. Atmospheric Environment 24A: 2387–2395.
526	Dresser, A.L. and Huizer, R.D., 2011. CALPUFF and AERMOD model validation study in the near field:
527	Martins Creek revisited. Journal of the Air and Waste Management Assoc. 61: 647–659.
528	EPA (U.S. Environmental protection Agency), 1992. User's guide for the industrial source complex (ISC)
529	dispersion models vol. 1, user's instructions. EPA-450/4-92-008a, U.S. Environmental Protection
530	Agency, Research Triangle Park, North Carolina.
531	EPA, 2000. Meteorological monitoring guidance for regulatory modeling applications. EPA-454/R-99-
532	005, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research
533	Triangle Park, North Carolina.
534	EPA, 2007. Updated user's guide for CAP88-PC version 3.0. EPA 402-R-00-004, U.S. Environmental
535	Protection Agency, Office of Radiation and Indoor Air, Washington D.C.

536	Farris, W.T., Napier. B.A., Eslinger, P.W., Ikenberry, T.A., Shipler, D.B., and Simpson, J.C., 1994.
537	Atmospheric pathway dosimetry report, 1944-1992. PNWD-2228 HEDR, Pacific Northwest
538	Laboratories , Richland, Washington.
539	Fox, T,J., 2009. Clarification on EPA-FLM recommended settings for CALMET. Memorandum from T.J.
540	Fox to Regional, Modeling Contacts, August 31, 2009. U.S. Environmental Protection Agency,
541	Research Triangle Park, NC.
542	Grogan H.A., Aanenson J.W., McGavran P.D., Meyer K.R., Mohler H.J., Mohler S.S., Rocco J.R., Rood
543	A.S., Till J.E., and Wilson L.H., 2007. Modeling of the Cerro Grande fire at Los Alamos: An
544	independent analysis of exposure, heath risk, and communication with the public. In: Applied
545	modeling and computations in nuclear science. ACS Symposium Series 945, American Chemical
546	Society, Washington, D.C.
547	Hanna S.R., Strimaitis D.G., and Chang J.C., 1991. Hazard response modeling uncertainty (a quantitative
548	method), volume 1: User's guide for software for evaluating hazardous gas dispersion models.
549	Florida: Air Force Engineering and Service Center, Tyndall Air Force Base.
550	Haugen D.A. and Fontino I. P., 1993. Performance evaluation of the terrain-responsive atmospheric code
551	(TRAC) model. Colorado School of Mines, Golden, Colorado.
552	Hodgin C.R., 1991. Terrain responsive atmospheric code (TRAC) transport and diffusion: Features and
553	software overview. RFP-4516, EG&G Rocky Flats, Golden, Colorado.
554	Lange R., 1992, Modeling the dispersion of tracer plumes in the Colorado Front Range boundary layer
555	during night- and day-time conditions. American Meteorological Society Tenth Symposium on
556	Turbulence and Diffusion, Portland Oregon.
557	Napier, B.A., 2009. GENII2 users' guide, rev 3. PNNL-14583, Pacific Northwest National Laboratories ,
558	Richland, Washington.

559	Ramsdell Jr J.V., Simonen C.A., and Burk K.W., 1994. Regional atmospheric transport code for Hanford
560	emission tracking (RATCHET). PNWD-2224-HEDR, Pacific Northwest Laboratories, Richland,
561	Washington.
562	Ramsdell Jr J.V., Athey G.F., McGuire S.A., and Brandon L.K., 2010. RASCAL 4: description of models
563	and methods. NUREG 1940, U.S. Nuclear Regulatory Commission, Office of Nuclear Security and
564	Incident Response, Washington, D.C
565	Rood, A.S., 1999. Performance evaluation of atmospheric transport models, revision 1. 3-CDPHE-RFP-
566	1996-FINAL (Rev 1), Risk Assessment Corporation, Neeses, South Carolina.
567	Rood, A.S, Killough, G.G., and Till, J.E., 1999. Evaluation of atmospheric transport models for use in
568	phase II of the historical public exposures studies at the Rocky Flats plant. Risk Analysis 19 (4):
569	559–576.
570	Rood, A.S., Grogan, H.A., and Till, J.E., 2002. A model for a comprehensive assessment of exposure and
571	lifetime cancer incidence risk from plutonium released from the Rocky Flats plant, 1953-1989.
572	Health Physics 82 (2); 182–212.
573	Rood, A.S., Voillequé, P.G., Rope, S.K., Grogan, H.A., and Till, J.E., 2008. Reconstruction of
574	atmospheric concentrations and deposition of uranium and decay products released from the former
575	uranium mill at Uravan, Colorado USA. Journal of Environmental Radioactivity 99: 1258–1278.
576	Scire J.S., Strimatis D.J., and Yamartino R.J., 2002. A user's guide to the CALPUFF dispersion model
577	version 5.7. Earth Tech Inc, Concord, Massachusetts.
578	Till J.E., Killough G.G., Meyer K.R., Sinclair W.S., Voillequé P.G., Rope S.K., and Case M.J., 2000. The
579	Fernald dosimetry reconstruction project. Technology 7: 270–295.
580	Till J.E., Rood A.S., Voilleque P.G., McGavran P.D., Meyer K.R., Grogan H.A., Sinclair W.K.,
581	Aanenson J.W., Meyer H.R., Mohler H.J., Rope S.K., and Case M.J., 2002. Risks to the public from
582	historical releases of radionuclides and chemicals at the Rocky Flats Environmental Technology Site.
583	Journal of Exposure Analysis and Environmental Epidemiology 12 (5): 355–372

Weil J.C., Sykes R.I., and Venkatram A., 1992. Evaluating air quality models: Review and outlook.

Journal of Applied Meteorology 31: 1121–1145.

585

Figure Captions

- Fig 1. CALPUFF model domain showing location of the WVTS samplers and terrain features of the Colorado Front Range.
- Fig 2. Scatter plots of paired nine-hour average ensemble mean concentrations at the 8-km distance. Points that lie within the shaded region are within a factor of 2 of the observations.
- Fig 3. Scatter plots of paired nine-hour average ensemble mean concentrations at the 16-km distance. Points that lie within the shaded region are within a factor of 2 of the observations.
- Fig 4. Scatter plots of unpaired nine-hour average concentrations at the 8-km distance. Points that lie within the shaded region are within a factor of 2 of the observations.
- Fig 5. Scatter plots of unpaired nine-hour average concentrations at the 16-km distance. Points that lie within the shaded region are within a factor of 2 of the observations.

Table Captions

Table 1. Winter Validation Tracer Study start and end times and source strength

Table 2. Performance measures for the maximum one-hour average concentration unpaired in time and space modeling objective

Table 3. Performance measures for the maximum nine-hour average concentration unpaired in time and space modeling objective

Table 4. Significant differences in model performance measures for the maximum one- and nine-hour-average concentration unpaired in space and time modeling objective. An "X" indicates a significant difference.

Table 5. Performance measures for plume maximum location, plume width, and the arc integrated concentration at the 8-km distance.

Table 6. Performance measures for plume maximum location, plume width, and the arc integrated concentration at the 16-km distance.

Table 7. Significant differences in model performance measures for the plume width and arc integrated concentration modeling objective. An "X" indicates a significant difference.

Table 8. Performance measures for the unpaired nine-hour averaged concentration modeling objective.

Table 9. Significant differences in model performance measures for the unpaired nine-hour average concentration modeling objective. An "X" indicates a significant difference.

Table 10. Performance measures for the daytime, transition, and nighttime period ensemble means modeling objective at the 8-km distance.

Table 11. Performance measures for the daytime, transition, and nighttime period ensemble means modeling objective at the 16-km distance.

Table 12. Significant differences in model performance measures for the day, transition, and nighttime ensemble means modeling objective. An "X" indicates a significant difference.

Table 1. Winter Validation Tracer Study start and end times and source strength.

	Start	Start time		End time	MFC ^b	CWLc	Average
Test	date	(MST) ^a	End date	(MST) ^a	$(kg hr^{-1})$	$(kg hr^{-1})$	$(kg hr^{-1})$
1	02/03/91	20:00:00	02/04/91	07:00:00	13.71	13.24	13.48
2	02/04/91	20:00:00	02/05/91	07:00:00	13.05	12.16	12.61
3	02/06/91	20:00:00	02/07/91	07:00:00	13.71	13.33	13.52
4	02/07/91	20:00:00	02/08/91	07:00:00	16.53	16.84	16.69
5	02/09/91	13:00:00	02/09/91	00:00:00	23.61	22.63	23.12
6	02/11/91	07:00:00	02/11/91	18:00:00	23.61	22.94	23.28
7	02/12/91	07:00:00	02/12/91	18:00:00	23.61	23.99	23.80
8	02/14/91	01:00:00	02/14/91	12:00:00	23.61	23.44	23.53
9	02/15/91	07:00:00	02/15/91	18:00:00	23.61	23.29	23.45
10	02/16/91	20:00:00	02/17/91	07:00:00	23.61	23.47	23.54
11	02/17/91	20:00:00	02/18/91	07:00:00	23.61	23.04	23.33
12	02/19/91	07:00:00	02/19/91	18:00:00	23.21	22.97	23.09

^a Mountain standard time.

 $b \;\; \text{Release rate calculated from mass flow controllers (MFCs) that were calibrated at 760 mm Hg, 21.11 °C.}$

^c Release rate determined from cylinder weight loss (CWL).

Table 2. Performance measures for the maximum one-hour average concentration unpaired in time and space modeling objective.

8-km results	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	1.9	3.4	0.99	0.92
GM Confidence Interval	1.24 - 2.87	2.15 — 5.94	0.65 - 1.56	0.55 - 1.65
GSD Cp/Co	2.2	3.4	2.2	2.8
VG	2.7	17.4	1.8	2.6
log(VG) Confidence Interval	0.40 - 1.59	1.78 - 4.15	0.26 - 0.92	0.48 - 1.35
r	0.748	0.742	0.76	0.612
r Confidence Interval	0.55 - 0.92	0.46 - 0.90	0.58 - 0.96	0.27 - 0.89
% within a factor of 2	33.3%	25.0%	58.3%	58.3%
16-km results	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	2.7	4.9	0.98	0.93
GM Confidence Interval	1.71 - 3.94	2.40 — 9.34	0.59 - 1.62	0.57 - 1.47
GSD Cp/Co	2.2	3.5	2.8	2.5
VG	4.7	54.8	2.7	2.2
log(VG) Confidence Interval	0.57 - 2.42	2.25 - 5.85	0.41 - 1.47	0.55 - 1.07
log(vo) Confidence interval	0.37 - 2.42	2.23 - 3.63	0.71	0.55 - 1.07
r	0.37 - 2.42 0.885	0.727	0.742	0.828

Table 3. Performance measures for the maximum nine-hour average concentration unpaired in time and space modeling objective.

8-km results	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	1.2	1.5	0.79	0.75
GM Confidence Interval	0.70 - 2.02	0.94 - 2.52	0.59 - 1.03	0.55 - 1.00
GSD Cp/Co	2.9	3.0	1.9	1.8
VG	2.9	3.6	1.6	1.5
log(VG) Confidence Interval	0.78 - 1.39	0.69 - 1.88	0.08 - 0.82	0.13 - 0.68
r	0.56	0.73	0.86	0.90
r Confidence Interval	0.35 - 0.88	0.49 - 0.89	0.67 - 0.98	0.78 - 0.98
% within a factor of 2	33.3%	16.7%	91.7%	75.0%
16-km results	ISC2	AERMOD	CALPUFF	RATCHET
16-km results GM Cp/Co	ISC2 1.4	AERMOD 1.8	CALPUFF 0.90	RATCHET 0.85
GM Cp/Co	1.4	1.8	0.90	0.85
GM Cp/Co GM Confidence Interval	1.4 0.96 — 1.99	1.8 0.94 — 3.14	0.90 0.59 — 1.30	0.85 0.56 — 1.23
GM Cp/Co GM Confidence Interval GSD Cp/Co	1.4 0.96 — 1.99 2.7	1.8 0.94 — 3.14 3.1	0.90 0.59 — 1.30 2.4	0.85 0.56 — 1.23 2.6
GM Cp/Co GM Confidence Interval GSD Cp/Co VG	1.4 0.96 — 1.99 2.7 2.9	1.8 0.94 — 3.14 3.1 4.4	0.90 0.59 — 1.30 2.4 2.0	0.85 $0.56 - 1.23$ 2.6 2.4
GM Cp/Co GM Confidence Interval GSD Cp/Co VG log(VG) Confidence Interval	$ \begin{array}{r} 1.4 \\ 0.96 1.99 \\ 2.7 \\ 2.9 \\ 0.41 1.76 \end{array} $	$ \begin{array}{c} 1.8 \\ 0.94 - 3.14 \\ 3.1 \\ 4.4 \\ 0.86 - 2.17 \end{array} $	0.90 $0.59 - 1.30$ 2.4 2.0 $0.27 - 1.31$	0.85 $0.56 - 1.23$ 2.6 2.4 $0.40 - 1.44$

Table 4. Significant differences in model performance measures for the maximum one-hour and nine-hour-average concentration unpaired in space and time modeling objective. An "X" indicates a significant difference.

Maximum one-hour	8-km data			16-km data		
Model	GM	VG	r	GM	VG	r
ISC2-AERMOD	X	X		X	X	X
ISC2-CALPUFF	X			X		
ISC2-RATCHET	X			X		
AERMOD-CALPUFF	X	X		X	X	
AERMOD-RATCHET	X	X		X	X	
CALPUFF-RATCHET						
Maximum nine-hour	8-km data			16-km data		
Model	GM	VG	r	GM	VG	r
ISC2-AERMOD						
ISC2-CALPUFF	X			X		
ISC2-RATCHET	X	X	X	X		
AERMOD-CALPUFF	X			X		
AERMOD-RATCHET	X	X	X	X		
CALPUFF-RATCHET			4'			

Table 5. Performance measures for plume maximum location, plume width, and the arc integrated concentration at the 8-km distance.

Plume maximum location	ISC2	AERMOD	CALPUFF	RATCHET
Mean deviation (degrees)	26	14	24	14
Standard Error (degrees)	11	3.0	10	3.2
Minimum (degrees)	4.2	0.0	3.3	0.0
Maximum (degrees)	133	31	129	29
Plume width	ISC2	AERMOD	CALPUFF	RATCHET
FB	0.42	-0.43	0.14	-0.34
FB Confidence Interval	0.31 - 0.54	-0.52 — -0.35	-0.06 — 0.37	-0.51 — -0.15
NMSE	0.25	0.22	0.15	0.25
NMSE Confidence Interval	0.13 - 0.38	0.15 - 0.32	0.07 - 0.31	0.15 - 0.36
r	0.57	0.19	0.71	-0.22
r Confidence Interval	0.00 - 0.88	-0.24 — 0.50	0.44 - 0.88	-0.79 — 1.00
% within a factor of 2	83.3%	91.7%	75.0%	91.7%
Arc-integrated concentration	ISC2	AERMOD	CALPUFF	RATCHET
$GM C_p/C_o$	1.1	0.94	0.76	0.79
GM Confidence Interval	0.71 - 1.66	0.68 - 1.29	0.61 - 0.94	0.60 - 1.03
GSD C_p/C_o	2.4	2.3	2.0	1.8
VG	2.1	1.9	1.7	1.5
log(VG) Confidence Interval	0.52 - 0.93	0.29 - 0.94	0.07 - 0.98	0.05 - 0.70
r	0.81	0.86	0.86	0.89
r Confidence Interval	0.64 - 0.96	0.67 - 0.96	0.60 - 1.00	0.75 - 0.98
% within a factor of 2	50.0%	50.0%	91.7%	91.7%

Table 6. Performance measures for plume maximum location, plume width, and the arc integrated concentration at the 16-km distance.

Plume maximum location	ISC2	AERMOD	CALPUFF	RATCHET
Mean deviation (degrees)	34	36	26	23
Standard Error (degrees)	9.4	9.0	8.0	7.2
Minimum (degrees)	0.0	0.0	3.8	0.0
Maximum (degrees)	95	98	86	74
Plume width	ISC2	AERMOD	CALPUFF	RATCHET
FB	0.30	-0.57	0.081	-0.47
FB Confidence Interval	0.10 - 0.49	-0.71 — -0.44	-0.18 — 0.37	-0.66 — -0.27
NMSE	0.26	0.44	0.26	0.39
NMSE Confidence Interval	0.09 - 0.42	0.28 - 0.63	0.11 - 0.48	0.20 - 0.60
r	0.074	-0.022	0.49	0.065
r Confidence Interval	-0.36 — 0.51	-0.63 — 0.36	0.20 - 0.79	-0.57 — 0.54
% within a factor of 2	83.3%	50.0%	66.7%	58.3%
Arc-integrated concentration	ISC2	AERMOD	CALPUFF	RATCHET
$GM C_p/C_o$	1.4	1.2	0.88	1.1
GM Confidence Interval	1.11 — 1.87	0.77 - 1.70	0.66 - 1.16	0.77 - 1.60
$\operatorname{GSD} C_p/C_o$	2.0	2.4	1.9	2.1
VG	1.8	2.1	1.5	1.6
log(VG) Confidence Interval	0.28 - 0.85	0.36 - 1.15	0.13 - 0.71	0.40 - 0.58
r	0.92	0.85	0.87	0.82
r Confidence Interval	0.88 - 0.97	0.75 - 0.96	0.70 - 0.98	0.76 - 0.89
% within a factor of 2	66.7%	50.0%	75.0%	83.3%

Table 7. Significant differences in model performance measures for the plume width and arc integrated concentration modeling objective. An "X" indicates a significant difference.

Plume width	8-km data			16-km data		
Model	FB	NMSE	r	FB	NMSE	r
ISC2-AERMOD	X			X		
ISC2-CALPUFF						
ISC2-RATCHET	X			X		
AERMOD-CALPUFF	X		X	X		
AERMOD-RATCHET						
CALPUFF-RATCHET	X		X	X		
Arc-integrated						
concentration	8-km data			16-km data		
Model	GM	VG	r	GM	VG	r
ISC2-AERMOD						
ISC2-CALPUFF				X		
ISC2-RATCHET	X					X
AERMOD-CALPUFF						
AERMOD-RATCHET						
CALPUFF-RATCHET			7			

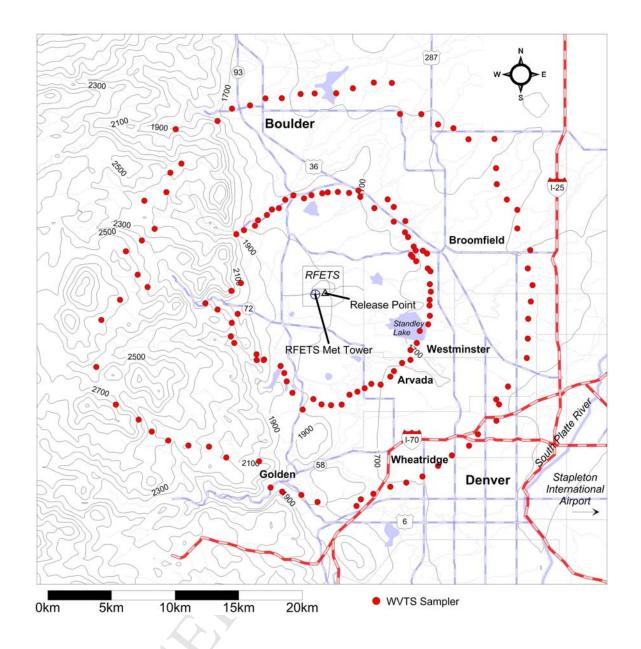
Table 8. Performance measures for the unpaired nine-hour averaged concentration modeling objective.

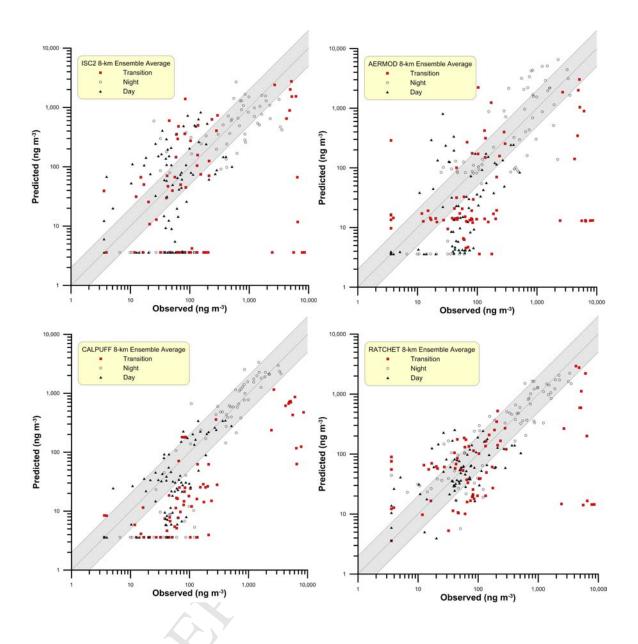
8-km results	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	0.93	0.82	0.89	1.3
GM confidence interval	0.90 - 1.00	0.77 - 0.87	0.84 - 0.92	1.22 - 1.31
GSD Cp/Co	1.9	2.8	2.7	1.8
GSD confidence interval	1.77 - 1.96	2.62 - 2.88	2.56 - 2.76	1.66 - 1.90
n	392	564	430	560
VG	1.5	2.9	2.5	1.5
log(VG) confidence interval	0.33 - 0.46	0.97 - 1.16	0.89 - 1.04	0.32 - 0.46
r	0.92	0.87	0.87	0.95
r confidence interval	0.91 - 0.94	0.85 - 0.89	0.85 - 0.89	0.94 - 0.96
% within a factor of 2	85%	56%	58%	81%
16-km results	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	1.4	0.86	1.1	1.4
GM confidence interval	1.35 - 1.50	0.81 — 0.92	1.08 - 1.19	1.32 - 1.45
GSD Cp/Co	2.1	2.9	2.5	2.0
GSD confidence interval	1.93 - 2.17	2.75 - 3.04	2.43 - 2.62	1.94 - 2.08
n	316	410	299	399
VG	1.9	3.2	2.4	1.8
log(VG) confidence interval	0.57 - 0.71	1.04 - 1.25	0.80 - 0.94	0.54 - 0.63
r	0.88	0.82	0.82	0.90
r confidence interval	0.86 - 0.90	0.79 - 0.85	0.80 - 0.85	0.89 - 0.91
% within a factor of 2	51%	49%	62%	62%

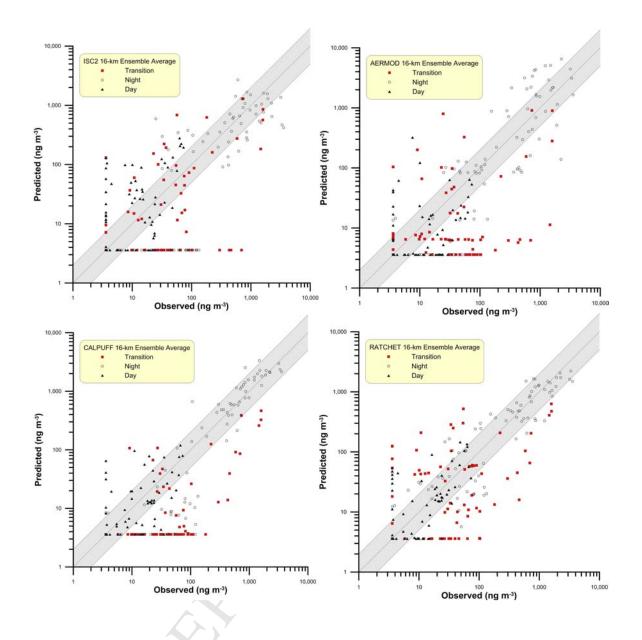
Table 9. Significant differences in model performance measures for the unpaired nine-hour average concentration modeling objective. An "X" indicates a significant difference.

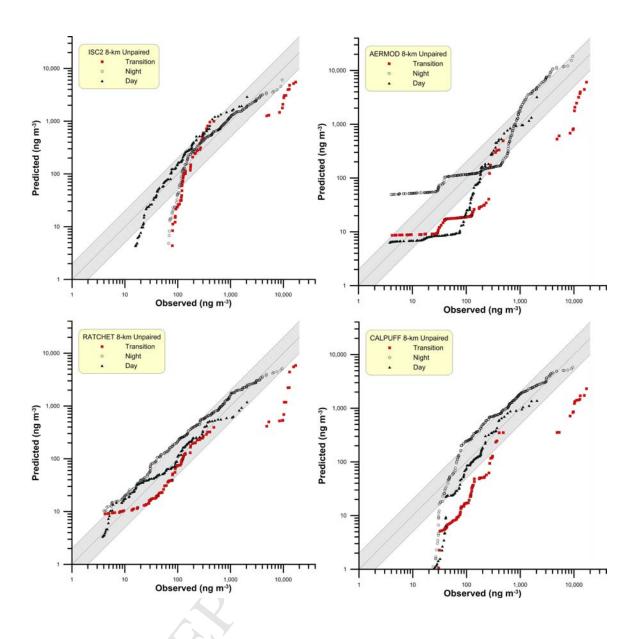
	8-km data			16-km data		
Model	GM	VG	r	GM	VG	r
ISC2-AERMOD	X	X	X	X	X	X
ISC2-CALPUFF	X	X	X	X	X	X
ISC2-RATCHET	X		X			
AERMOD-CALPUFF		X		X	X	
AERMOD-RATCHET	X	X	X	X	X_{\perp}	X
CALPUFF-RATCHET	X	X	X	X	X	X

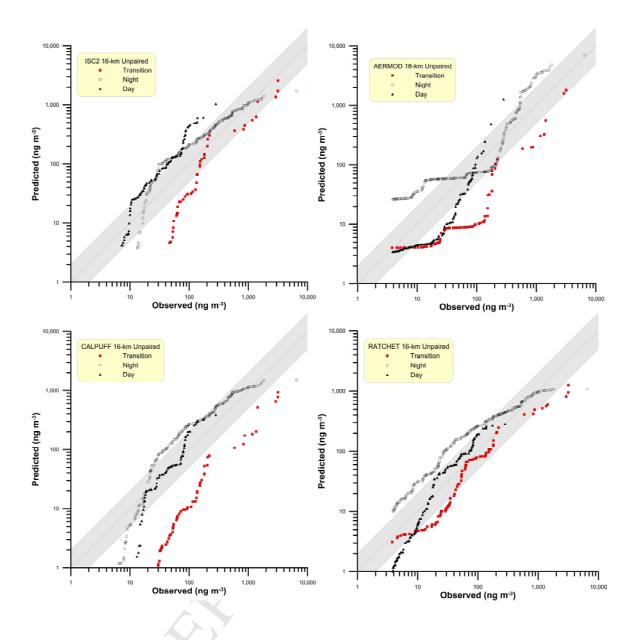
Table 10. Performance measures for the daytime, transition, and nighttime period ensemble means modeling objective at the 8-km distance.


Daytime tests	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	1.0	0.43	0.61	1.05
GM confidence interval	0.71 - 1.46	0.31 - 0.59	0.49 - 0.76	0.87 - 1.30
GSD Cp/Co	4.7	4.3	2.6	2.5
GSD confidence interval	3.87 - 5.60	3.25 - 5.36	2.29 - 2.92	2.16 - 2.87
VG	11	16	3.2	2.3
log(VG) confidence interval	1.83 - 2.97	2.12 - 3.45	0.81 - 1.52	0.59 - 1.11
r	0.45	0.46	0.74	0.63
r confidence interval	0.26 - 0.58	0.28 - 0.62	0.62 - 0.82	0.46 - 0.76
% within a factor of 2	32%	38%	61%	69%
Transition period tests	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	0.3	0.31	0.19	0.56
GM confidence interval	0.15 - 0.48	0.19 - 0.51	0.15 - 0.25	0.36 - 0.90
GSD Cp/Co	12.1	8.3	3.4	7.4
GSD confidence interval	8.06 - 19.6	5.30 - 12.5	2.70 - 4.07	4.44 - 11.0
VG	2024	326	68.2	71.2
log(VG) confidence interval	5.19 - 11.50	3.49 - 8.31	3.32 - 5.17	2.31 - 6.56
r	0.36	0.41	0.82	0.43
r confidence interval	0.01 - 0.51	0.17 - 0.61	0.73 - 0.88	0.18 - 0.66
% within a factor of 2	35%	38%	18%	40%
Nighttime period tests	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	0.5	0.84	0.56	1.0
GM confidence interval	0.36 - 0.71	0.64 - 1.10	0.43 - 0.75	0.86 - 1.25
GSD Cp/Co	4.3	3.4	3.3	2.4
GSD confidence interval	3.45 - 5.47	2.89 - 3.95	2.67 - 3.84	2.00 - 2.72
VG	12.9	4.6	5.6	2.1
log(VG) confidence interval	1.81 - 3.46	1.13 - 1.96	1.08 - 2.41	0.48 - 1.00
r	0.79	0.86	0.92	0.87
r confidence interval	0.68 - 0.86	0.79 - 0.90	0.88 - 0.95	0.82 - 0.91
% within a factor of 2	53%	47%	68%	72%


Table 11. Performance measures for the daytime, transition, and nighttime period ensemble means modeling objective at the 16-km distance.


Daytime tests	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	1.6	0.72	0.94	1.10
GM confidence interval	1.18 - 2.27	0.54 - 0.96	0.75 - 1.19	0.90 - 1.41
GSD Cp/Co	3.7	3.4	2.6	2.7
GSD confidence interval	3.11 — 4.54	2.60 - 4.39	2.15 — 3.21	2.21 — 3.24
VG	6.81	5.04	2.54	2.73
log(VG) confidence interval	1.44 - 2.68	1.09 - 2.23	0.60 - 1.35	0.63 - 1.42
r	0.41	0.27	0.55	0.57
r confidence interval	0.11 - 0.57	0.02 - 0.53	0.33 - 0.72	0.34 - 0.74
% within a factor of 2	40%	56%	69%	72%
Transition period tests	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	0.4	0.29	0.20	0.61
GM confidence interval	0.24 - 0.59	0.18 - 0.47	0.15 - 0.28	0.39 - 0.94
GSD Cp/Co	6.3	6.8	3.8	6.2
GSD confidence interval	4.67 - 8.31	4.91 - 9.00	2.99 - 4.59	4.70 - 7.72
VG	72.31	169.10	69.42	33.82
log(VG) confidence interval	3.02 - 5.85	3.79 - 6.46	3.41 - 5.12	2.76 - 4.38
r	0.40	0.22	0.60	0.32
r confidence interval	0.11 - 0.60	-0.13 — 0.49	0.35 - 0.76	0.07 - 0.54
% within a factor of 2	37%	30%	30%	27%
Nighttime period tests	ISC2	AERMOD	CALPUFF	RATCHET
GM Cp/Co	1.2	1.2	0.90	1.1
GM confidence interval	0.89 - 1.72	0.86 - 1.51	0.73 - 1.09	0.93 - 1.33
GSD Cp/Co	3.8	3.5	2.5	2.2
GSD confidence interval	2.82 — 5.07	2.84 - 4.08	2.11 - 2.83	1.80 - 2.62
VG	6.0	4.6	2.3	1.8
log(VG) confidence interval	1.07 - 2.79	1.09 - 2.02	0.57 - 1.10	0.35 - 0.95
r	0.74	0.82	0.91	0.92
r confidence interval	0.60 - 0.85	0.73 - 0.89	0.87 - 0.94	0.87 - 0.95
% within a factor of 2	54%	53%	68%	76%


Table 12. Significant differences in model performance measures for the day, transition, and nighttime ensemble means modeling objective. An "X" indicates a significant difference.


Daytime	8-km data			16-km data		
Model	GM	VG	r	GM	VG	r
ISC2-AERMOD	X			X		7
ISC2-CALPUFF	X	X	X	X	X	
ISC2-RATCHET		X			X	
AERMOD-CALPUFF		X	X		X	
AERMOD-RATCHET	X	X		X		
CALPUFF-RATCHET	X			X	1	
Transition	8-km data			16-km data		
Model	GM	VG	r	GM	VG	r
ISC2-AERMOD						
ISC2-CALPUFF		X	X	X		
ISC2-RATCHET		X				
AERMOD-CALPUFF			X			X
AERMOD-RATCHET				X		
CALPUFF-RATCHET	X		X	X		
Nighttime	8-km data			16-km data		
Model	GM	VG	r	GM	VG	r
ISC2-AERMOD	X	X	7			
ISC2-CALPUFF			X		X	X
ISC2-RATCHET	X	X			X	X
AERMOD-CALPUFF			X		X	X
AERMOD-RATCHET		X			X	X
CALPUFF-RATCHET	X	X				

