EAS 471 First Lab (unscored)
 "Drunkard's walk" simulation of particle paths in homogeneous turbulence

Write a program ${ }^{1}$ to compute an ensemble of N_{P} (of order 10^{3}, say) independent particle trajectories $Z(t), X(t)$ originating at the origin (coordinates $x=z=0$) at time $t=0$ in unbounded, homogeous, stationary, two-dimensional turbulence. Assume the Eulerian velocity vector is of form (\bar{u}, w) where the mean velocity on the z axis, i.e. \bar{w}, is zero. The needed velocity statistics are to be prescribed as:

$$
\begin{align*}
\bar{u} & =1 \mathrm{~ms}^{-1} \tag{1}\\
\sigma_{w} & =1 \mathrm{~ms}^{-1} \tag{2}\\
\tau & =1 s \tag{3}
\end{align*}
$$

where σ_{w} is the standard deviation of w and τ is the turbulence time scale.
Trajectories are to be computed with discrete timestep $d t \ll \tau$, the algorithm being

$$
\begin{align*}
d X & =\bar{u} d t \tag{4}\\
d Z & =\sqrt{2 K d t} r \tag{5}
\end{align*}
$$

where r is a standardized Gaussian random number (i.e. a normally distributed random variate with mean value 0 and variance 1) and $K \equiv \sigma_{w}^{2} \tau$ is the eddy diffusivity.

[^0]In terms of output from your simulation, please compute the ensemble mean ${ }^{2}$ square displacement of particles on the z axis, $\left\langle Z^{2}(t)\right\rangle$, at times $t / \tau=$ $(0.1,0.2,0.5,1,2,5,10,20,50)$. To speed up the calculation you may wish to vary the time step: e.g. for travel times $t / \tau \leq 1$ you might use $d t=0.02$, and for longer travel times use $d t=0.1$.

Plot the root mean square displacement $\sigma_{z}=\sqrt{\left\langle Z^{2}\right\rangle}$ versus t. Compare your results (graphically) with the formula

$$
\begin{equation*}
\sigma_{z}=\sqrt{2 \sigma_{w}^{2} \tau t} \tag{6}
\end{equation*}
$$

Briefly document your lab exercise (PDF format), and submit for feedback. You should submit at least two figures, i.e. your curve of $\sigma_{z}=\sqrt{\left\langle Z^{2}\right\rangle}$ versus t , and a sample of your trajectories as Z versus t (or versus $x \equiv \bar{u} t$). It will suffice to display only a handful of the actual trajectories (so as to give a "flavour" of what the simulation is doing), but your graph of $\sigma_{z}(t)$ should be based on a value of N_{P} that is sufficiently large to yield a reasonably smooth curve.

[^1]
[^0]: ${ }^{1}$ A flowchart accompanies this Lab Description.

[^1]: ${ }^{2}$ An ensemble mean is often represented using the angle bracket \rangle.

