Eulerian Simulation of Dispersion in the ASL

Write a program to calculate the mean concentration field $\bar{c}=\bar{c}(x, z)$ downwind from a continuous crosswind line source ${ }^{1}$ at $x=0, z=h_{s}=0.46 \mathrm{~m}$ in the horizontally-uniform, neutrally-stratified atmospheric surface layer. Assume \bar{c} is the solution of the advectiondiffusion equation

$$
\begin{equation*}
\bar{u}(z) \frac{\partial \bar{c}}{\partial x}=\frac{\partial}{\partial z}\left[K(z) \frac{\partial \bar{c}}{\partial z}\right] \tag{1}
\end{equation*}
$$

with mean windspeed and eddy diffusivity profiles

$$
\begin{align*}
\bar{u}(z) & =\frac{u_{*}}{k_{v}} \ln \frac{z}{z_{0}} \tag{2}\\
K(z) & =\frac{k_{v}}{S_{c}} u_{*} z \tag{3}
\end{align*}
$$

($k_{v}=0.4$ is the von Karman constant, u_{*} is the friction velocity, z_{0} is the surface roughness length and S_{c} is the turbulent Schmidt number; the x-axis points along the mean wind direction, and z, as usual, is the vertical axis).

Let $\mathrm{J}=1 \ldots \mathrm{~N}$ label a set of gridplanes along the vertical axis, and $\mathrm{I}=1 \ldots$ a set of gridplanes spaced along x. For this assignment use the following implicit discretization, derived in class using the control volume method:

$$
\begin{align*}
\Delta z \bar{u}_{J}\left[\bar{c}_{I, J}-\bar{c}_{I-1, J}\right] & =\Delta x K_{J+\frac{1}{2}} \frac{\bar{c}_{I, J+1}-\bar{c}_{I, J}}{\Delta z} \\
& -\Delta x K_{J-\frac{1}{2}} \frac{\bar{c}_{I, J}-\bar{c}_{I, J-1}}{\Delta z} \tag{4}
\end{align*}
$$

This is a "marching" problem in the sense that the x (alongwind) axis is a "1-way" axis there is no mechanism for material to travel against the wind. Therefore given the profile $\bar{c}_{I-1, J}$ for all J at location I-1, we can compute the profile at I by rearranging to obtain a set of neighbour equations linking $\bar{c}_{I, J}$ at all J (this discretization results in an implicit algorithm). The notation $J+\frac{1}{2}$ indicates that the height-varying eddy diffusivity $K(z)$ is to be evaluated on the interface separating the $(\mathrm{J}+1)$ th and Jth grid planes.

Specify grid-lengths $\Delta x \sim 0.5 \mathrm{~m}, \Delta z \sim 0.2 \mathrm{~m}$. For two choices $S_{c}=(1,0.63)$ of the Schmidt number, compare your calculated solution $\bar{c}(100, z)$ at $x=100 \mathrm{~m}$ on a graph that also shows the observations (Table 1) of Project Prairie Grass run 57, for which the meteorological situation was $u_{*}=0.50 \mathrm{~m} \mathrm{~s}^{-1}$, $z_{0}=0.0058 \mathrm{~m}$. (Note: to compare with Table 1, you'll need to scale your computed concentrations the same way, that is, you multiply your solution for \bar{c} by $z_{0} u_{*} / k_{v}$.)

[^0]
Method

The above algorithm can be cast in the form

$$
\begin{equation*}
c_{J} \bar{c}_{I, J+1}+b_{J} \bar{c}_{I, J}+a_{J} \bar{c}_{I, J-1}=D_{I, J}, \quad \mathrm{~J}=1 . . \mathrm{J}_{\mathrm{mx}} \tag{5}
\end{equation*}
$$

where the c_{J}, b_{J}, a_{J} are the "neighbour coefficients" (following the naming scheme of our Matlab solver), and $\bar{c}_{I, J}$ is the concentration matrix. The term $D_{I, J}$ contains information (only) from the upstream column at $I-1$, so we can regard it as a known. Thus we may frame our problem of finding the vertical column of values of \bar{c} at downstream location I (given the column at $I-1$) as a matrix problem,

$$
\begin{equation*}
\mathrm{MC}=\mathbf{D} \tag{6}
\end{equation*}
$$

where \mathbf{M} is the coefficient matrix, and is tridiagonal. Thus we may find the unknown column (i.e. $\bar{c}_{I, J} \forall J$) as

$$
\begin{equation*}
\mathbf{C}=\mathbf{M}^{-1} \mathbf{D} \tag{7}
\end{equation*}
$$

which in Matlab syntax is $\mathbf{C}=\mathbf{M} \backslash \mathbf{D}$.
In principle we need only once compute \mathbf{M}^{-1}, and once known we could use it repeatedly to step down the I axis: each time we get a new \mathbf{C} column matrix we recompute \mathbf{D}, and repeat the operation. Each step gives us \mathbf{C} at a column further down the x-axis by a distance Δx.

To compute the new \mathbf{C} column matrix for each step down the x-axis you may use either Matlab's built-in matrix inversion $\mathbf{C}=\mathbf{M} \backslash \mathbf{D}$, or a Matlab implementation of the (less robust) TDMA method ("TDMA_solver.m").

Upper and lower boundary conditions

Set the top of your domain $z\left(J_{\max }\right)$ sufficiently high (say, at least 30 m) that $\bar{c}\left(J_{\max }\right)=0$. Then your coefficients at $J=J_{\max }$ are

$$
\begin{align*}
b_{J_{\text {max }}} & =1 \\
c_{J_{\max }} & =\text { not used } \\
a_{J_{\max }} & =0 \\
D_{J_{\max }} & =0 \tag{8}
\end{align*}
$$

If we presume our gas does not react with the ground, we want zero flux to ground, which is assured by requiring $\bar{c}(I, 1) \equiv \bar{c}(I, 2)$. Thus at $J=1$ the needed coefficients are

$$
\begin{align*}
b_{1} & =1 \\
c_{1} & =-1 \\
a_{1} & =\text { not used } \\
D_{1} & =0 \tag{9}
\end{align*}
$$

Inlet boundary condition

How is your solution going to "know" there is a source? Let J_{h} be the height index of the cell the physical source will lie within, and let the streamwise index value $I=1$ correspond to a column of gridpoints aligned at the source location. The easiest approach is to set the inlet or inflow concentration profile as

$$
\bar{c}(1, J)= \begin{cases}0 & \text { if } J \neq J_{h} \tag{10}\\ 1 /\left(\bar{u}\left(J_{h}\right) \Delta z\right) & \text { if } J=J_{h}\end{cases}
$$

which guarantees that the total mass flux across the first interior plane $I=1$ will be

$$
\begin{equation*}
Q=\sum_{J} \bar{c}(0, J) \bar{u}(J) \Delta z=1 \tag{11}
\end{equation*}
$$

Table 1: Normalized (and dimensionless) crosswind-integrated concentration $z_{0} u_{*} \chi /\left(k_{v} Q\right)$ observed at distance $x=100 \mathrm{~m}$ from the point source (height $h_{s}=0.46 \mathrm{~m}$) in Project Prairie Grass run 57 ; units are $\chi, \mathrm{kg} \mathrm{m}^{-2}$ and $Q,\left[\mathrm{~kg} \mathrm{~s}^{-1}\right]$. (This is equivalent to the normalized concentration $z_{0} u_{*} \bar{c} /\left(k_{v} q_{\ell}\right)$ at 100 m downwind from a crosswind line source at h_{s}, with $\bar{c},\left[\mathrm{~kg} \mathrm{~m}^{-3}\right]$ and $\left.Q,\left[\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right].\right)$

$$
\begin{array}{ll}
z[\mathrm{~m}] & z_{0} u_{*} \chi /\left(k_{v} Q\right) \\
\hline 17.5 & 1.5 \mathrm{E}-6 \\
13.5 & 6.6 \mathrm{E}-6 \\
10.5 & 1.56 \mathrm{E}-5 \\
7.5 & 3.51 \mathrm{E}-5 \\
4.5 & 7.9 \mathrm{E}-5 \\
2.5 & 1.25 \mathrm{E}-4 \\
1.5 & 1.53 \mathrm{E}-4 \\
1.0 & 1.62 \mathrm{E}-4 \\
0.5 & 1.70 \mathrm{E}-4
\end{array}
$$

[^0]: ${ }^{1}$ The field of \bar{c} is the analog of the crosswind integrated concentration $\chi=\chi(x, z)$ due to a steady point source, and Project Prairie Grass provided field measurements of the latter.

