
EAS471 Mid-term Exam 11 Feb., 2016

Professor: J.D. Wilson Time available: 75 mins Value: 15%

Please answer four questions: 4 x 4% → 16%

1. The principle of “conservation of mass” can be expressed quite generally

by the equation
∂ϕ

∂t
= −∇ · F+ Q , (1)

where ϕ [kgm−3] is the volumetric concentration of the species of in-

terest. Identify the assumptions or restrictions or simplifications whose

introduction leads from Eq. (1) to the “diffusion equation”

∂ϕ

∂t
= Dϕ

∂2ϕ

∂x2
, (2)

where Dϕ is the molecular diffusivity of the species ϕ.

This is similar to short answer question 2 of the 2007 exam. Answer:

• assume there are no sources or sinks, i.e. Q = 0

• assume there is only one space dimension∗∗, x, such that

∂ϕ

∂t
= − ∂Fx

∂x
∗∗or (equivalently), assume that symmetry prevails along other spa-

tial axes such that ∂Fy/∂y = ∂Fz/∂z = 0.

• assume the flux of ϕ along x is purely diffusive, i.e. Fx = −Dϕ ∂ϕ/∂x,

such that
∂ϕ

∂t
= − ∂

∂x

(
−Dϕ

∂ϕ

∂x

)

• assume the diffusivity is independent of position, then

∂ϕ

∂t
= Dϕ

∂2ϕ

∂x2
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2. Perform a dimensional analysis to find a law for the terminal velocity w of

a spherical particle of radius r and density ρ in still air with density ρa and

kinematic viscosity ν [m2 s−1]. The particle is subject to a gravitational

force (per unit mass) given by g [m s−2].

Answer: The number n of variables involved is n = 6, while the number

of fundamental dimensions is m = 3. Therefore one seeks a relation-

ship between n − m = 3 independent dimensionless variables, i.e. an

expression of form

π1 = f(π2, π3)

where π1 will be the ratio of the terminal velocity w to some suitable

scale for velocity such as, say,
√
rg. As to the arguments (π2, π3) of the

unknown function, one of them can be chosen as ρ/ρa (or its reciprocal;

either is equally acceptable). So we have

w
√
rg

= F

(
ρ

ρa
, θ

)
where θ is the third, and as yet unspecified, dimensionless variable. How

to specify the latter? We haven’t yet “used” the kinematic viscosity ν, so

any ratio we form using ν will be independent of the two we’ve already

chosen. How to make ν dimensionless? Notice that the units of
√
r3g

are m2 s−1, the same as those of ν. Thus, finally,

w
√
rg

= F

(
ρ

ρa
,

ν√
r3g

)
.

(Note: this is a simplified version of short answer question 2 of the 2009

exam, repeated as short answer question 1 of the 2010 exam. Notice

that you did not need to do a laborious manipulation using the method

of indices; however if you did choose to do so, carried through correctly

it would have given the correct result.)
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3. Determine the 4×4 tridiagonal coefficient matrix M and the right hand

side B in a matrix expression of form M Θ = B for the numerical

solution of
∂2θ

∂z2
= 2

on 0 ≤ z ≤ 1, subject to θ(0) = θ(1) = 0. Set up your solution with

four, equi-spaced gridpoints indexed J = (1, 2, 3, 4) positioned at zJ =

(0, 1/3, 2/3, 1). Adopt the simple O[∆z2] computational molecule for the

curvature at internal gridpoints (J = 2, 3). You need not invert M, nor

obtain the (numerical) solution vector Θ = (θ1, θ2, θ3, θ4).

Answer: You have the following four equations:

1× θ1 + 0× θ2 + 0× θ3 + 0× θ4 = 0

9× θ1 − 18× θ2 + 9× θ3 + 0× θ4 = 2

0× θ1 + 9× θ2 − 18× θ3 + 9× θ4 = 2

0× θ1 + 0× θ2 + 0× θ3 + 1× θ4 = 0 .

Thus,

M =


1 0 0 0
9 −18 9 0
0 9 −18 9
0 0 0 1

 , B =


0
2
2
0


(Note: this is a simplified version of short answer question 2 of the 2009

and 2010 exams).

4. Suppose a velocity “field” U = U(x, t) is self-advecting along the x axis,

i.e. ∂U/∂t = −U ∂U/∂x, and that initially the field is a pure sine wave

with wavelength λ, i.e. the initial condition is U(x, 0) = sin kx where

k = 2π/λ is the wavenumber. In this context, and given the identities

sin(A+B) = sin(A) cos(B) + cos(A) sin(B) ,

sin(A−B) = sin(A) cos(B)− cos(A) sin(B) ,

explain what is meant by “wave-wave interaction”.
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Answer: At t = 0, we have ∂U/∂x = k cos kx and so ∂U/∂t = −k sin(kx) cos(kx).

It follows that an infinitesimal time dt later,

U(x, dt) = sin(kx)− k dt sin(kx) cos(kx) = sin(kx)− k dt

2
sin(2kx)

because sin(A) cos(A) ≡ 1
2 sin(2A). Wave-wave interaction (wavenumber

k1 with wavenumber k2, though in this case k1 = k2 = k) produces waves

of wavenumber (k1 + k2) and (k1 − k2).

5. Figure (1) shows a grid for the numerical solution of

∂θ

∂t
+ U

∂θ

∂x
= 0 , (3)

discretized as (say)

ϕn+1
I − ϕn

I

∆t
+ U

ϕn
I − ϕn

I−1

∆x
(4)

and with finite gridlengths ∆x = const., ∆t = const. The sloping lines1

correspond to two different values of the advecting velocity U , assumed

constant. Explain for which of the two velocities this setup would satisfy

the CFL condition U∆t/∆x ≤ 1, and why failure to do so would imply

that the algorithm is unlikely to result in a satisfactory solution.

Answer: With the given algorithm, a “half-cone of influence” on the

solution at (I, n) spreads outward along the x-axis towards smaller x by

exactly the amount ∆x for each increment ∆t backward in time. We also

know that the true value of θ(I, n) ≡ θ(I∆x, n∆t) is θ(I∆x−Un∆t, 0),

i.e. we look backward in time down the “ray” representing the physical

velocity U and locate where it lies on the x axis at time t = 0. In the

case that U = U1, this ray lies outside the half-cone of influence so that

θNum(I∆x, n∆t) cannot be influenced by the initial value at the proper

point: the numerical solution must fail. Furthermore it is evident that

U1∆t > ∆x, violating the CFL condition.

1In the actual exam, line U2 was wrongly drawn as a negative velocity, such that as time increased position
x decreased.
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Figure 1: A uniform grid. Vertical axis is time, indexed n; horizontal axis is distance x,
indexed I.
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