Professor: J.D. Wilson Time available: $75 \mathrm{mins} \quad$ Value: 15%

Please answer four questions: $4 \times 4 \% \rightarrow 16 \%$

1. The principle of "conservation of mass" can be expressed quite generally by the equation

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}=-\nabla \cdot \mathbf{F}+Q \tag{1}
\end{equation*}
$$

where $\phi\left[\mathrm{kg} \mathrm{m}^{-3}\right]$ is the volumetric concentration of the species of interest. Identify the assumptions or restrictions or simplifications whose introduction leads from Eq. (1) to the "diffusion equation"

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}=\mathcal{D}_{\phi} \frac{\partial^{2} \phi}{\partial x^{2}} \tag{2}
\end{equation*}
$$

where \mathcal{D}_{ϕ} is the molecular diffusivity of the species ϕ.
This is similar to short answer question 2 of the 2007 exam. Answer:

- assume there are no sources or sinks, i.e. $Q=0$
- assume there is only one space dimension ${ }^{* *}, x$, such that

$$
\frac{\partial \phi}{\partial t}=-\frac{\partial F_{x}}{\partial x}
$$

${ }^{* *}$ or (equivalently), assume that symmetry prevails along other spatial axes such that $\partial F_{y} / \partial y=\partial F_{z} / \partial z=0$.

- assume the flux of ϕ along x is purely diffusive, i.e. $F_{x}=-\mathcal{D}_{\phi} \partial \phi / \partial x$, such that

$$
\frac{\partial \phi}{\partial t}=-\frac{\partial}{\partial x}\left(-\mathcal{D}_{\phi} \frac{\partial \phi}{\partial x}\right)
$$

- assume the diffusivity is independent of position, then

$$
\frac{\partial \phi}{\partial t}=\mathcal{D}_{\phi} \frac{\partial^{2} \phi}{\partial x^{2}}
$$

2. Perform a dimensional analysis to find a law for the terminal velocity w of a spherical particle of radius r and density ρ in still air with density ρ_{a} and kinematic viscosity $\nu\left[\mathrm{m}^{2} \mathrm{~s}^{-1}\right]$. The particle is subject to a gravitational force (per unit mass) given by $g\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$.

Answer: The number n of variables involved is $n=6$, while the number of fundamental dimensions is $m=3$. Therefore one seeks a relationship between $n-m=3$ independent dimensionless variables, i.e. an expression of form

$$
\pi_{1}=f\left(\pi_{2}, \pi_{3}\right)
$$

where π_{1} will be the ratio of the terminal velocity w to some suitable scale for velocity such as, say, $\sqrt{r g}$. As to the arguments $\left(\pi_{2}, \pi_{3}\right)$ of the unknown function, one of them can be chosen as ρ / ρ_{a} (or its reciprocal; either is equally acceptable). So we have

$$
\frac{w}{\sqrt{r g}}=F\left(\frac{\rho}{\rho_{a}}, \theta\right)
$$

where θ is the third, and as yet unspecified, dimensionless variable. How to specify the latter? We haven't yet "used" the kinematic viscosity ν, so any ratio we form using ν will be independent of the two we've already chosen. How to make ν dimensionless? Notice that the units of $\sqrt{r^{3} g}$ are $\mathrm{m}^{2} \mathrm{~s}^{-1}$, the same as those of ν. Thus, finally,

$$
\frac{w}{\sqrt{r g}}=F\left(\frac{\rho}{\rho_{a}}, \frac{\nu}{\sqrt{r^{3} g}}\right) .
$$

(Note: this is a simplified version of short answer question 2 of the 2009 exam, repeated as short answer question 1 of the 2010 exam. Notice that you did not need to do a laborious manipulation using the method of indices; however if you did choose to do so, carried through correctly it would have given the correct result.)
3. Determine the 4×4 tridiagonal coefficient matrix \mathbf{M} and the right hand side \mathbf{B} in a matrix expression of form $\mathbf{M} \boldsymbol{\Theta}=\mathbf{B}$ for the numerical solution of

$$
\frac{\partial^{2} \theta}{\partial z^{2}}=2
$$

on $0 \leq z \leq 1$, subject to $\theta(0)=\theta(1)=0$. Set up your solution with four, equi-spaced gridpoints indexed $\mathrm{J}=(1,2,3,4)$ positioned at $z_{\mathrm{J}}=$ $(0,1 / 3,2 / 3,1)$. Adopt the simple $\mathrm{O}\left[\Delta z^{2}\right]$ computational molecule for the curvature at internal gridpoints $(\mathrm{J}=2,3)$. You need not invert \mathbf{M}, nor obtain the (numerical) solution vector $\boldsymbol{\Theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$.

Answer: You have the following four equations:

$$
\begin{array}{r}
1 \times \theta_{1}+0 \times \theta_{2}+0 \times \theta_{3}+0 \times \theta_{4}=0 \\
9 \times \theta_{1}-18 \times \theta_{2}+9 \times \theta_{3}+0 \times \theta_{4}=2 \\
0 \times \theta_{1}+9 \times \theta_{2}-18 \times \theta_{3}+9 \times \theta_{4}=2 \\
0 \times \theta_{1}+0 \times \theta_{2}+0 \times \theta_{3}+1 \times \theta_{4}=0
\end{array}
$$

Thus,

$$
\mathbf{M}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
9 & -18 & 9 & 0 \\
0 & 9 & -18 & 9 \\
0 & 0 & 0 & 1
\end{array}\right), \mathbf{B}=\left(\begin{array}{l}
0 \\
2 \\
2 \\
0
\end{array}\right)
$$

(Note: this is a simplified version of short answer question 2 of the 2009 and 2010 exams).
4. Suppose a velocity "field" $U=U(x, t)$ is self-advecting along the x axis, i.e. $\partial U / \partial t=-U \partial U / \partial x$, and that initially the field is a pure sine wave with wavelength λ, i.e. the initial condition is $U(x, 0)=\sin k x$ where $k=2 \pi / \lambda$ is the wavenumber. In this context, and given the identities

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B), \\
& \sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B),
\end{aligned}
$$

explain what is meant by "wave-wave interaction".

Answer: At $t=0$, we have $\partial U / \partial x=k \cos k x$ and so $\partial U / \partial t=-k \sin (k x) \cos (k x)$.
It follows that an infinitesimal time $d t$ later,

$$
U(x, d t)=\sin (k x)-k d t \sin (k x) \cos (k x)=\sin (k x)-\frac{k d t}{2} \sin (2 k x)
$$

because $\sin (A) \cos (A) \equiv \frac{1}{2} \sin (2 A)$. Wave-wave interaction (wavenumber k_{1} with wavenumber k_{2}, though in this case $k_{1}=k_{2}=k$) produces waves of wavenumber $\left(k_{1}+k_{2}\right)$ and $\left(k_{1}-k_{2}\right)$.
5. Figure (1) shows a grid for the numerical solution of

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}+U \frac{\partial \theta}{\partial x}=0 \tag{3}
\end{equation*}
$$

discretized as (say)

$$
\begin{equation*}
\frac{\phi_{I}^{n+1}-\phi_{I}^{n}}{\Delta t}+U \frac{\phi_{I}^{n}-\phi_{I-1}^{n}}{\Delta x} \tag{4}
\end{equation*}
$$

and with finite gridlengths $\Delta x=$ const., $\Delta t=$ const. The sloping lines ${ }^{1}$ correspond to two different values of the advecting velocity U, assumed constant. Explain for which of the two velocities this setup would satisfy the CFL condition $U \Delta t / \Delta x \leq 1$, and why failure to do so would imply that the algorithm is unlikely to result in a satisfactory solution.

Answer: With the given algorithm, a "half-cone of influence" on the solution at (I, n) spreads outward along the x-axis towards smaller x by exactly the amount Δx for each increment Δt backward in time. We also know that the true value of $\theta(I, n) \equiv \theta(I \Delta x, n \Delta t)$ is $\theta(I \Delta x-U n \Delta t, 0)$, i.e. we look backward in time down the "ray" representing the physical velocity U and locate where it lies on the x axis at time $t=0$. In the case that $U=U_{1}$, this ray lies outside the half-cone of influence so that $\theta^{\mathrm{Num}}(I \Delta x, n \Delta t)$ cannot be influenced by the initial value at the proper point: the numerical solution must fail. Furthermore it is evident that $U_{1} \Delta t>\Delta x$, violating the CFL condition.

[^0]

Figure 1: A uniform grid. Vertical axis is time, indexed n ; horizontal axis is distance x, indexed I.

[^0]: ${ }^{1}$ In the actual exam, line U_{2} was wrongly drawn as a negative velocity, such that as time increased position x decreased.

