Mid-term Exam

11 Feb., 2016

<u>Professor</u>: J.D. Wilson <u>Time available</u>: 75 mins <u>Value</u>: 15%

## Please answer four questions: 4 x 4% $\rightarrow$ 16%

1. The principle of "conservation of mass" can be expressed quite generally by the equation

$$\frac{\partial \phi}{\partial t} = -\nabla \cdot \mathbf{F} + Q , \qquad (1)$$

where  $\phi \, [\text{kg m}^{-3}]$  is the volumetric concentration of the species of interest. Identify the assumptions or restrictions or simplifications whose introduction leads from Eq. (1) to the "diffusion equation"

$$\frac{\partial \phi}{\partial t} = \mathcal{D}_{\phi} \frac{\partial^2 \phi}{\partial x^2} , \qquad (2)$$

where  $\mathcal{D}_{\phi}$  is the molecular diffusivity of the species  $\phi$ .

This is similar to short answer question 2 of the 2007 exam. Answer:

- assume there are no sources or sinks, i.e. Q = 0
- assume there is only one space dimension<sup>\*\*</sup>, x, such that

$$\frac{\partial \phi}{\partial t} = -\frac{\partial F_x}{\partial x}$$

\*\*or (equivalently), assume that symmetry prevails along other spatial axes such that  $\partial F_y/\partial y = \partial F_z/\partial z = 0$ .

• assume the flux of  $\phi$  along x is purely diffusive, i.e.  $F_x = -\mathcal{D}_{\phi} \partial \phi / \partial x$ , such that

$$\frac{\partial \phi}{\partial t} = -\frac{\partial}{\partial x} \left( -\mathcal{D}_{\phi} \frac{\partial \phi}{\partial x} \right)$$

• assume the diffusivity is independent of position, then

$$\frac{\partial \phi}{\partial t} = \mathcal{D}_{\phi} \frac{\partial^2 \phi}{\partial x^2}$$

2. Perform a dimensional analysis to find a law for the terminal velocity w of a spherical particle of radius r and density  $\rho$  in still air with density  $\rho_a$  and kinematic viscosity  $\nu$  [m<sup>2</sup> s<sup>-1</sup>]. The particle is subject to a gravitational force (per unit mass) given by g [m s<sup>-2</sup>].

Answer: The number n of variables involved is n = 6, while the number of fundamental dimensions is m = 3. Therefore one seeks a relationship between n - m = 3 independent dimensionless variables, i.e. an expression of form

$$\pi_1 = f(\pi_2, \pi_3)$$

where  $\pi_1$  will be the ratio of the terminal velocity w to some suitable scale for velocity such as, say,  $\sqrt{rg}$ . As to the arguments  $(\pi_2, \pi_3)$  of the unknown function, one of them can be chosen as  $\rho/\rho_a$  (or its reciprocal; either is equally acceptable). So we have

$$\frac{w}{\sqrt{rg}} = F\left(\frac{\rho}{\rho_a}, \theta\right)$$

where  $\theta$  is the third, and as yet unspecified, dimensionless variable. How to specify the latter? We haven't yet "used" the kinematic viscosity  $\nu$ , so any ratio we form using  $\nu$  will be independent of the two we've already chosen. How to make  $\nu$  dimensionless? Notice that the units of  $\sqrt{r^3g}$ are m<sup>2</sup> s<sup>-1</sup>, the same as those of  $\nu$ . Thus, finally,

$$\frac{w}{\sqrt{rg}} = F\left(\frac{\rho}{\rho_a}, \frac{\nu}{\sqrt{r^3g}}\right) \;.$$

(Note: this is a simplified version of short answer question 2 of the 2009 exam, repeated as short answer question 1 of the 2010 exam. Notice that you did not need to do a laborious manipulation using the method of indices; however if you did choose to do so, carried through correctly it would have given the correct result.)

3. Determine the 4×4 tridiagonal coefficient matrix  $\mathbf{M}$  and the right hand side  $\mathbf{B}$  in a matrix expression of form  $\mathbf{M} \ \mathbf{\Theta} = \mathbf{B}$  for the numerical solution of

$$\frac{\partial^2 \theta}{\partial z^2} = 2$$

on  $0 \leq z \leq 1$ , subject to  $\theta(0) = \theta(1) = 0$ . Set up your solution with four, equi-spaced gridpoints indexed J = (1, 2, 3, 4) positioned at  $z_J = (0, 1/3, 2/3, 1)$ . Adopt the simple  $O[\Delta z^2]$  computational molecule for the curvature at internal gridpoints (J = 2, 3). You need not invert **M**, nor obtain the (numerical) solution vector  $\mathbf{\Theta} = (\theta_1, \theta_2, \theta_3, \theta_4)$ .

Answer: You have the following four equations:

$$1 \times \theta_1 + 0 \times \theta_2 + 0 \times \theta_3 + 0 \times \theta_4 = 0$$
  

$$9 \times \theta_1 - 18 \times \theta_2 + 9 \times \theta_3 + 0 \times \theta_4 = 2$$
  

$$0 \times \theta_1 + 9 \times \theta_2 - 18 \times \theta_3 + 9 \times \theta_4 = 2$$
  

$$0 \times \theta_1 + 0 \times \theta_2 + 0 \times \theta_3 + 1 \times \theta_4 = 0$$

Thus,

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 9 & -18 & 9 & 0 \\ 0 & 9 & -18 & 9 \\ 0 & 0 & 0 & 1 \end{pmatrix} , \ \mathbf{B} = \begin{pmatrix} 0 \\ 2 \\ 2 \\ 0 \end{pmatrix}$$

(Note: this is a simplified version of short answer question 2 of the 2009 and 2010 exams).

4. Suppose a velocity "field" U = U(x, t) is self-advecting along the x axis, i.e.  $\partial U/\partial t = -U \partial U/\partial x$ , and that initially the field is a pure sine wave with wavelength  $\lambda$ , i.e. the initial condition is  $U(x, 0) = \sin kx$  where  $k = 2\pi/\lambda$  is the wavenumber. In this context, and given the identities

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B),$$
  
$$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B),$$

explain what is meant by "wave-wave interaction".

Answer: At t = 0, we have  $\partial U/\partial x = k \cos kx$  and so  $\partial U/\partial t = -k \sin(kx) \cos(kx)$ . It follows that an infinitesimal time dt later,

$$U(x, dt) = \sin(kx) - k dt \sin(kx) \cos(kx) = \sin(kx) - \frac{k dt}{2} \sin(2kx)$$

because  $\sin(A) \cos(A) \equiv \frac{1}{2} \sin(2A)$ . Wave-wave interaction (wavenumber  $k_1$  with wavenumber  $k_2$ , though in this case  $k_1 = k_2 = k$ ) produces waves of wavenumber  $(k_1 + k_2)$  and  $(k_1 - k_2)$ .

5. Figure (1) shows a grid for the numerical solution of

$$\frac{\partial\theta}{\partial t} + U \,\frac{\partial\theta}{\partial x} = 0 \,, \tag{3}$$

discretized as (say)

$$\frac{\phi_I^{n+1} - \phi_I^n}{\Delta t} + U \frac{\phi_I^n - \phi_{I-1}^n}{\Delta x} \tag{4}$$

and with finite gridlengths  $\Delta x = \text{const.}$ ,  $\Delta t = \text{const.}$  The sloping lines<sup>1</sup> correspond to two different values of the advecting velocity U, assumed constant. Explain for which of the two velocities this setup would satisfy the CFL condition  $U\Delta t/\Delta x \leq 1$ , and why failure to do so would imply that the algorithm is unlikely to result in a satisfactory solution.

Answer: With the given algorithm, a "half-cone of influence" on the solution at (I, n) spreads outward along the x-axis towards smaller x by exactly the amount  $\Delta x$  for each increment  $\Delta t$  backward in time. We also know that the true value of  $\theta(I, n) \equiv \theta(I\Delta x, n\Delta t)$  is  $\theta(I\Delta x - Un\Delta t, 0)$ , i.e. we look backward in time down the "ray" representing the physical velocity U and locate where it lies on the x axis at time t = 0. In the case that  $U = U_1$ , this ray *lies outside the half-cone of influence* so that  $\theta^{\text{Num}}(I\Delta x, n\Delta t)$  cannot be influenced by the initial value at the proper point: the numerical solution must fail. Furthermore it is evident that  $U_1\Delta t > \Delta x$ , violating the CFL condition.

<sup>&</sup>lt;sup>1</sup>In the actual exam, line  $U_2$  was wrongly drawn as a negative velocity, such that as time increased position x decreased.



Figure 1: A uniform grid. Vertical axis is time, indexed n; horizontal axis is distance x, indexed I.