EAS471 Mid-term Exam 11 Feb., 2016

Professor: J.D. Wilson Time available: 75 mins Value: 15%

Please answer four questions: 4 x 4% — 16%

1. The principle of “conservation of mass” can be expressed quite generally
by the equation
dp

5=V F+Q. (1)

where ¢ [kgm™] is the volumetric concentration of the species of in-
terest. Identify the assumptions or restrictions or simplifications whose

introduction leads from Eq. (1) to the “diffusion equation”
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where Dy is the molecular diffusivity of the species ¢.

This is similar to short answer question 2 of the 2007 exam. Answer:

e assume there are no sources or sinks, i.e. Q =0

e assume there is only one space dimension™, x, such that
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“or (equivalently), assume that symmetry prevails along other spa-
tial axes such that 0F,/0y = 0F./0z = 0.

o assume the flux of ¢ along x is purely diffusive, i.e. £, = —D,0¢/0x,

such that
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e assume the diffusivity is independent of position, then

90 _ ) 0%

ot o2



2. Perform a dimensional analysis to find a law for the terminal velocity w of
a spherical particle of radius r and density p in still air with density p, and
kinematic viscosity v [m?s™1]. The particle is subject to a gravitational

force (per unit mass) given by g [ms™2].

Answer: The number n of variables involved is n = 6, while the number
of fundamental dimensions is m = 3. Therefore one seeks a relation-
ship between n — m = 3 independent dimensionless variables, i.e. an

expression of form
™ = f(7T27 7T3)

where m; will be the ratio of the terminal velocity w to some suitable
scale for velocity such as, say, \/7g. As to the arguments (w9, m3) of the
unknown function, one of them can be chosen as p/p, (or its reciprocal;

either is equally acceptable). So we have
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where 6 is the third, and as yet unspecified, dimensionless variable. How
to specify the latter? We haven’t yet “used” the kinematic viscosity v, so
any ratio we form using v will be independent of the two we’ve already
chosen. How to make v dimensionless? Notice that the units of \/@

are m?s~!, the same as those of v. Thus, finally,
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(Note: this is a simplified version of short answer question 2 of the 2009
exam, repeated as short answer question 1 of the 2010 exam. Notice
that you did not need to do a laborious manipulation using the method

of indices; however if you did choose to do so, carried through correctly

it would have given the correct result.)



3. Determine the 4x4 tridiagonal coefficient matrix M and the right hand

side B in a matrix expression of form M ® = B for the numerical
solution of
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on 0 < 2z < 1, subject to #(0) = 6(1) = 0. Set up your solution with
four, equi-spaced gridpoints indexed J = (1,2, 3,4) positioned at z3 =
(0,1/3,2/3,1). Adopt the simple O[Az?] computational molecule for the
curvature at internal gridpoints (J = 2,3). You need not invert M, nor

obtain the (numerical) solution vector @ = (61, 65,03, 6,).

Answer: You have the following four equations:

1X91—|—OX02+0X93—|—0XQ4:O
O9x b0 —18 X0y +9xb03+0x6, = 2
0X91+9X62—18X03—|—9X04:2
Ox0;+0xb0+0x603+1x60, = 0.
Thus,
1 0 0 0 0
9 —18 9 0 2
M= 0O 9 —-189 » B= 2
0 0 0 1 0

(Note: this is a simplified version of short answer question 2 of the 2009
and 2010 exams).

4. Suppose a velocity “field” U = U(x,t) is self-advecting along the z axis,
i.e. OU/Ot = —U OU/0z, and that initially the field is a pure sine wave
with wavelength A, i.e. the initial condition is U(z,0) = sin kz where
k = 27/ is the wavenumber. In this context, and given the identities

sin(A+ B) = sin(A)cos(B) + cos(A) sin(B),
sin(A — B) = sin(A) cos(B) — cos(A)sin(B),

explain what is meant by “wave-wave interaction”.
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Answer: At ¢ = 0, we have OU/0z = k cos kx and so OU /0t = —k sin(kx) cos(kx).
It follows that an infinitesimal time dt later,
k dt
U(x,dt) =sin(kz) — kdt sin(kz) cos(kx) = sin(kx) — o sin(2kx)
because sin(A) cos(A) = 5 sin(24). Wave-wave interaction (wavenumber
k1 with wavenumber ko, though in this case ky = ks = k) produces waves
of wavenumber (ky + ko) and (ky — ko).

5. Figure (1) shows a grid for the numerical solution of
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discretized as (say)
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and with finite gridlengths Az = const., At = const. The sloping lines!
correspond to two different values of the advecting velocity U, assumed
constant. Explain for which of the two velocities this setup would satisfy
the CFL condition UAt/Ax < 1, and why failure to do so would imply

that the algorithm is unlikely to result in a satisfactory solution.

Answer: With the given algorithm, a “half-cone of influence” on the
solution at (I, n) spreads outward along the z-axis towards smaller = by
exactly the amount Ax for each increment At backward in time. We also
know that the true value of 0(I,n) = 0(IAx,nAt) is (I Az — UnAt,0),
i.e. we look backward in time down the “ray” representing the physical
velocity U and locate where it lies on the x axis at time ¢ = 0. In the
case that U = Uy, this ray lies outside the half-cone of influence so that
ON (T Ax, nAt) cannot be influenced by the initial value at the proper
point: the numerical solution must fail. Furthermore it is evident that
U, At > Az, violating the CFL condition.

In the actual exam, line U, was wrongly drawn as a negative velocity, such that as time increased position
x decreased.
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Figure 1: A uniform grid. Vertical axis is time, indexed n; horizontal axis is distance x,
indexed I.



