
EAS 471 3rd Scored Assignment (20%) Due: 7 Apr. 2016

Option B: Numerical simulation of an idealized windbreak flow

Suppose an infinitely long, porous windbreak of heightH runs along the y-axis at x = 0, while

the mean wind is oriented along the x-axis. We will suppose the surface layer is neutrally

stratified, such that the profiles of mean wind speed and of eddy viscosity far upstream from

the disturbance are

u0(z) =
u∗0

kv
ln

z

z0
, (1)

K0(z) = kv u∗0 z (2)

(u∗0 is the upwind friction velocity, kv = 0.4 is the von Karman constant, and z0 is the surface

roughness length; the subscript “0” denotes a property in the upwind, undisturbed region

of the flow). We will further assume — however unrealistic this might appear1— that the

disturbance to the flow does not alter the eddy diffusivity, i.e. at any point the local eddy

viscosity K(x, z) ≡ K0(z). (For the purposes of the exercise, specific values for u∗0, z0 and

H are given below.)

The windbreak drags on the flow, and a plausible (and widely accepted) statement of

momentum conservation reads:

u
∂u

∂x
+ w

∂u

∂z
=

−1

ρ0

∂p

∂x
− ∂ u′2

∂x
− ∂ u′w′

∂z
− kr u |u| δ(x− 0) s(z −H) . (3)

This is the steady-state, Reynolds-averaged u-mtm equation, the final term being an empirical

“momentum sink”, localized at the windbreak: kr is known as the “resistance coefficient”

or “pressure loss coefficient”, and is dimensionless. The localizing functions are the delta-

function δ(x− 0) and a unit step function s(z −H) defined

s(z −H) =

{
1 , z ≤ H

0 , z > H
. (4)

Notice that the product u |u| guarantees that the drag, proportional in magnitude to the

square of the wind speed, always opposes the wind.

1In fact it is not a bad first approximation. Wilson (1985) tested a range of “closure assumptions”,
including this one, i.e. an eddy viscosity closure using the undisturbed eddy viscosity K0(z). Simulations
were compared against measurements, and this closure does capture the gross effect of the windbreak.
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Numerical formulation

For our assignment we shall radically simplify Eqn. (3). Assuming the windbreak is very

porous (kr ≪ 1) so that the disturbance to windspeed is small, we invoke a perturbation

expansion

u(x, z) = u0(z) + kr u1(x, z) , (5)

w(x, z) = kr u1(x, z) , (6)

p(x, z) = kr p1(x, z) . (7)

Then, retaining only terms to first order in kr, one obtains

u0(z)
∂u1

∂x
=

∂

∂z

(
K0(z)

∂u1

∂z

)
− 1

ρ0

∂p1
∂x

− u |u| δ(x− 0) s(z −H) . (8)

where the shear stress has been modelled using an (undisturbed) eddy viscosity K0(z).

The sum of the pressure gradient and the momentum sink can be represented by the

following effective pressure field (Wilson et al. 1990),

p1
ρ0

(x, z) =
−u2

0H

2π

[
tan−1

(
H + z

x

)
+ tan−1

(
H − z

x

)]
(9)

in which u0H is the windspeed at H far upstream from the windbreak. Eq. (8), a linear PDE,

combines elements of equations studied earlier in the course2. At the inflow boundary the

wind speed perturbation is zero, but it is “driven” away from zero by the effective pressure

disturbance; and it is subject to streamwise advection and vertical diffusion (with a height-

varying diffusivity). By taking a finite difference along the x-axis, Eq. (9) can be used to

evaluate the pressure gradient wherever needed; however for any cell that spans the

barrier one must set ∂p1/∂x = 0.

Discretization

Let I,J be the horizontal and vertical indices for a uniform grid, with the spacing between

nodes being ∆x,∆z. Define your z(J) as

z(J) = z0 + (J− 1)∆z (10)

2In particular, u1 plays a role similar to the mean concentration c of the first scored assignment: it is
advected by the same mean wind, and subject to vertical diffusion with an eddy diffusivity that differs from
that we applied to concentration only by a constant factor Sc.
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and your x(I) as

x(I) = X0 + (I− 1)∆x (11)

so that J = 1 corresponds to z = z0 (where u1 vanishes) and I = 1 corresponds to x = X0,

the inflow boundary where, again, u1 vanishes. If Jmx indexes the highest row of gridpoints,

then u1(I, Jmx) = 0. Stated verbally, with this setup the wind disturbance vanishes on the

inflow boundary, and along the uppermost and lowermost gridplanes. As x is a one-way axis,

a downwind boundary condition is not needed, i.e. this is a marching problem on the x-axis.

Application of the control volume method (integration of the equation throughout a

control volume surrounding the node) gives the following discretization, valid at all interior

gridpoints (1 < I and 1 < J < Jmx):

∆z u0(J) [u1(I, J)− u1(I− 1, J)] = ∆xKJ+1/2
u1(I, J + 1)− u1(I, J)

∆z

− ∆xKJ−1/2
u1(I, J)− u1(I, J− 1)

∆z

− SI ∆z

[
p1
ρ0

(I + 1/2, J) − p1
ρ0

(I− 1/2, J)

]
, (12)

where the “switch” SI is defined

SI =

{
1 if x(I) ̸= 0 ,

0 if x(I) = 0 and zJ ≤ H ,
(13)

so as to “turn off” the (favourable) pressure drop that occurs across the barrier (were that

retained, one would need also to retain the delta-function momentum sink). I have dropped

the subscript ‘0’ on the eddy viscosity, and the notation “J + 1/2” means that K is to be

evaluated at zJ +∆z/2. Recall that p1/ρ0 is given by Eq. (9).

We now cast this algorithm into the form

cJ u1(I, J + 1) + bJ u1(I, J) + aJ u1(I, J− 1) = D(I, J), J = 1..Jmx (14)

where the cJ , bJ , aJ are the “neighbour coefficients”, and u1(I, J) is the windspeed perturba-

tion. The coefficients are:

aJ = − ∆x

∆z
KJ−1/2 , (15)

bJ = ∆z u0(J) +
∆x

∆z
KJ+1/2 +

∆x

∆z
KJ−1/2 , (16)

cJ = − ∆x

∆z
KJ+1/2 , (17)
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and

D(I, J) = ∆z u0(J)u1(I− 1, J) − SI
∆x∆z

ρ0

p1(I + 1/2, J)− p1(I− 1/2, J)

∆x
. (18)

Solve Eqs. (9 and 12-18) numerically to obtain the solution field u1(xI, zJ) for a windbreak

with height H = 2 m standing at x = 0 on a surface with roughness length z0 = 0.01

m. Let the upwind friction velocity u∗0 = 0.25m s−1 and evaluate u0H accordingly. Use a

computational domain bounded by the ground plane (z = z0), an upper plane at z = z(Jmx) =

20H, an inflow plane at x = X0 = −10H and a downwind plane at x = x(Imx) = 30H.

Choose your gridlengths as ∆x = ∆z = H/10.

On a single graph plot your computed transects of u1 versus x/H along gridplanes close to

these levels: z/H = (0.4, 0.8, 1.2, 2, 5). On the transect at z/H ≈ 0.4, read off the minimum

value umin
1 and, noting from Eq. (5) that

u1

u0

≡ 1

kr

u(x, z)− u0(z)

u0(z)
, (19)

compare your umin
1 /u0 with the theoretical value given by Wilson et al. (1990), viz.

1

kr

(
∆u

u0

)min

=
−1

(1 + 2 kr)0.8
≈ −1 . (20)
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