Micrometeorological methods to determine surface-air exchange

« Micromet methods — their basis
* The family of micromet methods
* Inverse dispersion in particular

« Applications

JD Wilson
EAS, U. Alberta
31 Mar. 2016
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Micro-meteorological methods measure flux entering the atmosphere 2

» as opposed to observing what goes missing from the substrate.

» winds and gas fluxes are averaged over periods of order 15 — 60 min.
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May focus on measuring the vertical flux, or on measuring the horizontal flux 3

* e.g. eddy covariance: fast gas detector measuring concentration c(t) is paired with a sonic
anemometer giving w(t). Processing gives the vertical eddy flux w'c’

* provisos on site suitability apply — requires large fetch of uniform source
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Mass balance — assumption free — Integrated Horiz. Flux method (IHF) 4

Outlet flux U C varies
No flux through top with position on the

Lo oo reugn e .
control face...
No flux through ... necessitating a
upwind side profile of flux-detectors
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Example of a flux-gradient method

e assume instruments are immersed in a constant flux layer,

ie. Q=w'c' isindependent of height between ground and z,

« adopt gradient-diffusion model

oC 00
=—K., — , wO'=—K, =—
Q 0z "oz
« assume the (kinematic) heat flux w'0" is known (e.g. measured
by a sonic anemometer A 7 B
y ) u, c,,o,
» then
Q — Kc 62_61
e or, assuming MOST applies
z [L) c¢,—¢C
Q:Wrer (I)h(( m/L)> 62 61
7 _
mean q)m m 2 1
where@is often specified as (z,z,)". Ml c, , 61

« as an alternative to measuring the heat flux and temperature

profile, may measure the wind profile and take u,? as the

companion flux
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The suite of micromet methods to determine ground-air exchange**

endails uging o fucer 9oy will lapon
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&I (e Ca\z#ﬂ:,l‘e #
Ratiometric Direct / mass-
methods balance methods

Dispersion-model based methods (C-Q
relationship / inverse dispersion)

A

Y

A

Measure upward

transport Q (suitable only
for large source area)

transport

Measure downwind

Classified according to rigour of
transport model and ability to

4

handle complex source geometry

Y

* Eddy covariance

* Relaxed eddy
accumulation

* Flux-gradient

* Integrated
horiz. flux,
“IHF”
(demands
multiple
Sensors)

**Classification is arbitrary; not all variants of
main methods are indicated. will concentrate
on inverse dispersion using bLS

y A 4

* Theoretical * forward/backward
profile shape Lagrangian stochastic

(“TPS”, “fLS / bLS”

circular source

only)
MO-f/bLS 3D-f/bLS
sources in sources in
hh_ASL (MOST arbitrary
wind stats) (disturbed) flow
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Inverse Dispersion method to deduce Gas Emissions

* Atmospheric dispersion model relates downwind concentration C to emission
rate Q for prevailing regime of wind & turbulence

* Measurement of C (minus background) + model permits to infer Q
* Approach blends data + theory
* “WindTraX” is a Lagrangian stochastic (LS) particle trajectory model

appropriate for inverse dispersion on the surface layer scale — assumes
wind statistics obey MOST



MO-bLS applied to determine methane emission from waste lagoons
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Inverse dispersion using bLLS 1o
determine methane emission rate




MO-bLS applied to determine methane emission from waste lagoons 9

Line- averaging"ls netr dne gl 1
(pathlength typlcally 100 m)"




MO-bLS applied to determine methane emission from waste lagoons 10

Lasers posmoned
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Concentration signals — not necessarily time-continuous 11
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WindTrax facilitates MO-bLS — here showing “touchdown clouds”

Laser methane

| detectors on
“\| downwind side of
“““ emlttlng ponds
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* GPS source area(s) xfer coords onto WindTrax’s

‘| map, link to time series of C and wind (15-min
| averages)

* run WindTrax trajectory algorithm

* giving time-resolved record of Q with overall accuracy
of order +10-20% over |deal surfaces
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Converting concentration (C ) to emission rate (Q ) using WindTraX

13

(__ Touchdowns (red on source, grey elsewhere) air in
| contact with surface at these points eventually passes
| through laser beam

 ° Tlme 3 am, Nov. 24, 2009

* C,ost=2.34 ppm
e C, ...~ 2.83 ppm (well above “background”)

* Windspeed = 1.6 m/s

| * Atmos. weakly unstable

Emission Rate: Q = 1.7 kg/hr (total)
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Inferred CH4 emission rate
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1 - Average Q = 2.7 kg/hr (obs = 25 hr)

8 -Relationship with air temperature

= 65 kg/day
= 0.10 g/m?hr

-Strong diurnal cycle
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CH4 emission rate by eddy covariance (Casandra Brown, EAS MSc thesis) 14a




CH4 emission rate by eddy covariance & inverse dispersion (Casandra Brown) 14b




Inferred CH4 and NH3 emission rates from a Texas feedlot (47,000 cattle)




Inferred CH4 and NH3 emission rates from a Texas feedlot (47,000 cattle) 16




Pen emissions... (unfiltered data, computed at the site)

Feedlot, CH4 & NH3 emission rate vs DOY
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