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Chapter 9

Modelling the Atmospheric
Boundary-Layer (“physics”)

We have seen that it is useful (and proper) to explicitly define, and find evolution equations for, the

resolved state of the atmosphere u, v, w, p, T , ρv... In Numerical Weather Prediction, the average

can be considered a spatial average over a domain XY of order 10-100 km × 10-100 km. We saw

that the evolution equations ∂ρv/∂t, etc., contain the divergences of convective fluxes (of heat and

vapour and momentum) “carried by” the unresolved motion. Concentrating on the vertical fluxes

(which are in any case those we have best prospect of quantifying), the key unresolved fluxes are:

• heat: ρcpw′T ′

• vapour: w′ρ′v

• momentum: w′u′, w′v′, w′w′

For example, Cumulus convection over a synoptic scale area causes large vertical heat and vapour

fluxes at unresolved scales. The effects of such processes (eg. the drying and warming of the

atmosphere over a region where precipitation is reaching the ground), then, will need to be “pa-

rameterised” and is an aspect of the “model physics” or “grid point computations”.

A weather model has, obviously, boundaries in the vertical. Across the lower boundary, there

are vertical fluxes into the model domain, and the heat and vapour thus introduced is carried

up and redistributed within the atmosphere largely by motions that are unresolved in an NWP

model, whose spatial averaging masks the eddies seen near ground. More specifically, the “free

atmosphere,” the region where the “dynamics” terms in the equations for the resolved variables

are considered dominant, is coupled to the ground through the turbulent Atmospheric Boundary

Layer (ABL) (or Planetary Boundary Layer (PBL), which feeds up heat and moisture, as well as

transferring drag. These influences (friction, surface heating and evaporation) have an importance

to a synoptic scale forecast that increases with the range of the forecast. It can readily be shown,

for example, that over 24 hours surface evapotranspiration (E, kg m−2 s−1) can easily increase the

moisture content of the PBL by 25% – and this could be an important moisture supply for (eg.)
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CHAPTER 9. MODELLING THE ATMOSPHERIC BOUNDARY-LAYER (“PHYSICS”) 57

development of a tropical cyclone. Not only that: the surface heat flux (over very wet surfaces

the virtual heat flux) determines the PBL stability, and thus convection. So surface fluxes are

important w.r.t. changes in storage of heat and moisture (significant especially for longer-term

forecasts), and w.r.t. stability (significant both in the short and longer range forecasts). It is be-

lieved therefore that even short range (12 hr) forecasts will be improved as surface parameterisation

improves. When the lowest grid level of a weather model lies within the atmospheric surface layer

(ASL), a shallow layer at the base of the PBL having a depth of order 50 m, the surface fluxes can

be computed using the “Monin-Obukhov similarity theory” of the ASL. However in many models

(especially older ones) the lowest level is far above the surface layer, and to calculate the boundary

fluxes the entire PBL must be parameterised.

“Model physics” is the categorical name given to algorithms of a numerical weather model that

calculate the above-mentioned and other mechanisms/processes.

9.1 Role of the ABL in NWP

Near ground, essentially all the vertical transport is performed by the unresolved field: there are

strong vertical gradients in temperature, etc., and turbulent eddies transport heat (etc.) down

these gradients. An NWP model needs to estimate these vertical fluxes and their divergence, or

get the part of the tendency in T etc. due to ground forcing wrong. I don’t want to get into this

in detail; the turbulent ABL is the subject of the graduate course EAS 572.

We would like our NWP model to correctly calculate the redistribution of heat and vapour by

the unresolved eddies (the turbulence) near ground. The turbulent layer has a diurnally, seasonally,

and geographically varying depth h(t). Of course, any model which does not contain grid points

at heights below h(t) cannot in any way model the evolution of h(t) and the redistribution of heat

and moisture by the turbulence. So it is highly desirable to provide sufficient levels near ground to

at least resolve the vertical structure of the PBL in a way that is not incompatible with our very

coarse knowledge on the horizontal scale. It is not obvious that anything short of a large number

(say 50) of vertical grid points will suffice to model the PBL, in which the flow complexity is

such that simple K-theory closure (see below) is not really adequate (there can exist, for example,

counter gradient fluxes near the outer edge of the convective PBL or “CBL” – ie. mean heat flux

is from heights where it is in the mean cooler to where it is in the mean warmer). Therefore an

entire-PBL model will be complex and very time-consuming to compute, and there are competing

demands for computer power – eg., to reduce the grid lateral length. In any case (Haltiner &

Williams, 1980) for large scale NWP models, the exchange of heat and moisture between the PBL

and the free atmosphere above may be more important than details within the PBL. Vertical

transfer above the PBL is largely accomplished by cumulus convection and gravity waves (another

form of unresolved field), and by the large scale (resolved) vertical velocities.
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9.2 Estimating the unresolved fluxes using K-theory

Although there are synoptic scale horizontal gradients in our resolved meteorological fields u, T ,

etc., we might postulate some sort of “locally-uniformity” within the boundary-layer, such that

the resolved vertical structure implies some “equilibrium” pattern to the vertical unresolved fluxes,

and the horizontal unresolved fluxes are negligible. This permits a 1-dimensional (vertical variation

only) treatment of the ABL.

Suppose, then, we concentrate on estimating only the vertical unresolved fluxes,(
∂T

∂t

)
phys

= − ∂w′T ′

∂z
(9.1)

(etc). The vertical eddy heat flux QH = ρcpw′T ′ is unknown1. If we attempt to derive a rigorous

equation for it from the Navier-Stokes equations and the thermodynamic equation, the outcome is

∂w′T ′

∂t
= 0 = − w′2

∂T

∂z
− ∂w′w′T ′

∂z
− 1

ρ0
T ′
∂p′

∂z
+

g

T0
T ′2

+ ν T ′∇2w′ + κ w′∇2T ′ (9.2)

The terms ρ0, T0 are reference density and temperature, and may be considered to be mean values

across the ABL. It is important to note that all terms involving horizontal hetereogeneity have

been neglected, ie. eqn (9.2) assumes ∂w′T ′/∂x = ∂w′T ′/∂y = 0; the proper interpretation here is

that we are assuming the time tendency in statistics of the unresolved flow, and all terms involving

horizontal derivatives, are small compared to other terms.

This is a complicated equation which has only deepened our problem, for now we have further

unknown terms (the “closure problem”). However the equation at least offers us some insight, and

can certainly be used diagnostically in the context of measurements. The first term on the r.h.s.

is a production term: if there is unresolved motion then (by definition) w′2 6= 0, and if there is

also a temperature gradient, then the motion acts to create a (mean) unresolved flow of heat - the

sign of the flux depending on the sign of the temperature gradient. However the fourth term on

the r.h.s. shows that the mere existence of temperature variance, in the presence of a gravity field,

always acts to result in upward transport of heat (temperature variance vanishes only in a neutral

atmosphere).

There is no rigorous way around the closure problem. Ultimately an assumption must be made.

Here I will describe only the most basic closure assumption, namely the assumption of a linear flux-

gradient relationship (most commonly called K-theory or first-order closure or gradient-diffusion

closure). The model is certainly wrong in general, but one must go to much trouble to improve

upon it.

In K-theory it is assumed that the mean gradient in a given “driving force” (such as temper-

ature or humidity) drives a corresponding turbulent (more generally, unresolved) flux (of heat or

1Note: w′T ′ is called the “kinematic heat flux”, or more precisely “kinematic heat flux density.”
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moisture). The K-theory closure for the vertical sensible (as distinct from latent; defined below)

heat flux density is

QH = − ρcp KH(z)

(
∂T

∂z
− γd

)
(9.3)

where KH(z), m2 s−1 is the “eddy diffusivity for heat” and the subtraction of the adiabatic lapse

rate γd = −g/cp ensures zero heat flux in the neutral (adiabatically mixed) state of stratification.

Similarly the moisture flux is

E(z) = w′ρ′v = − Kv
∂ρv
∂z

(9.4)

where Kv, m2 s−1 is the eddy diffusivity for water vapour.

Note that these flux models are simply an analogy to molecular diffusion (conduction), but

with vastly greater diffusivities which are properties of the turbulent flow rather than of the fluid.

Experiments have approximately determined the values of the K’s very near ground over the range

in atmospheric stratification; those values are themselves affected by stratification, windspeed, and

the depth of the PBL.

9.2.1 Monin-Obukhov Similarity Theory of the ASL (MOST)

The Atmospheric Surface Layer (ASL) is the lowest 50 m (or so) of the ABL, where proximity to

ground limits vertical motion and mixing, and so vertical gradients in mean windspeed, tempera-

ture, humidity (etc.) are very large. This is an important layer of the atmosphere - we live in it!

Let us call its depth hASL and accept that the precise definition of this depth is vague.

Monin and Obuknov provided an empirical theory of the ASL in its simplest, horizontally-

uniform state, by hypothesizing that that state is determined by the (roughly, height-independent2)

turbulent fluxes of momentum and heat across it. Specifically Monin and Obukhov postulated

that the most important “global” (or “external” or “governing”) scales are the friction velocity

u∗ =
√
−u′w′ and the kinematic heat flux QH/ρcp = w′T ′ (from the latter a turbulent temperature

scale T ∗ = −w′T ′/u∗ is derived). Monin-Obukhov similarity theory (‘MOST’) specifically pertains

to the hh ASL at heights far enough above the surface that no length scales pertaining to the

surface are relevant, thus only height z enters the picture; and since buoyancy effects hinge on

existence of gravity, let’s just say that a scale g/T0 is also needed.

From the available parameters, one may form a new length scale, the Obukhov length

L =
−u3∗

kv
g
T0

QH
ρ0cp

(9.5)

where the von-Karman constant kv = 0.4 is included purely by convention. If the ASL is neutral,

by definition |L| = ∞, while if the ASL is unstable then L < 0 (and vice versa). If |L| . 2

m, we have such light winds and/or strong heat fluxes that the state of the ASL is ill-defined

2In the sense that, say, |w′T ′(hASL)−w′T ′(0)| ≤ 0.1 |w′T ′(0)|, etc. Thus we may call the hhASL the “constant
flux layer”.
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(and difficult to even measure). Otherwise, MOST has been found to give a good description. Its

specific predictions are (for example)

kvz

u∗

∂u

∂z
= φm

( z
L

)
kvhz

T∗

∂T

∂z
= φh

( z
L

)
kvwz

r∗

∂ρv
∂z

= φw

( z
L

)
kvcz

c∗

∂c

∂z
= φc

( z
L

)
(9.6)

where the functions on the r.h.s. are universal empirical Monin-Obukhov (“MO”) functions3 and

the kv’s are defined such that in each case φ(0) = 1 (the normalizing lengthscales on the l.h.s.

could equally have been L, but then different functions would result on the rhs). The scales for

water vapour and for a generic gas (concentration c) have been formed from their respective fluxes,

viz. r∗ = −w′ρ′v/u∗, c∗ = − w′c′/u∗.

The consensus view at present from the available experiments is that kvw = kvh = kv = 0.4,

while the best atmospheric dispersion experiments indicate kvc > kv, ie. Sc = kv/kvc < 1. Taking

the stable case, experiments show φm ≈ φh ≈ φv ≈ 1 + β z/L with β ≈ 5. The corresponding

wind profile is the “log-linear” profile

u =
u∗
kv

[
ln
z

z0
+ β

z − z0
L

]
(9.7)

where z0 is a constant of integration, defined to be the location on the z-axis where mean windspeed

(apparently) vanishes... the “surface roughness length”. While MO theory does not hold down as

low as z ∼ z0, in practise we apply it unless we want to go to the trouble of exploiting a more

detailed theory.

Now the MOST does not explicitly hinge on introducing the flux-gradient closure, but we can

readily see that it provides us formulae for the diffusivities. By re-arranging eqns(9.8) it is easy to

show that the K’s for momentum, heat, water vapour and a (general) gaseous additive are

Km =
kvu∗z

φm

Kh =
kvu∗z

φh
(9.8)

Kw =
kvu∗z

φw
(9.9)

Kc =
kvcu∗z

φc
(9.10)

where we shall often denote the eddy viscosity more simply as K.

3The ratio z/L approximately equals the ratio of the rates of buoyant and shear production of turbulent kinetic
energy (more on this below).
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9.3 A vintage treatment of the ABL (old Canadian Re-

gional Finite Element Model)

The K’s were specified as multiples of an eddy viscosity formulated as

K = a λ
√
k (9.11)

where a is a constant (near 1), λ is a height-dependent “mixing length” that relates to the size

of the unresolved eddies, and k is the kinetic energy (per unit mass) in the unresolved motion,

defined by

k =
1

2

(
u′2 + v′2 + w′2

)
(9.12)

Since
√
k is a velocity, we can regard it as a measure of the strength of the unresolved (turbulent)

velocities, and λ as a measure of the distance along which an eddy persists. The “exchange

coefficient” K, measuring the efficiency of transport by the unresolved motions, depends on both

these factors.

An exact evolution equation for k can be derived from the Navier-Stokes equations, by steps

we will not cover. In a simplified form in which advective terms have been dropped (which is

appropriate in the context of “grid point computations”) the k-equation is:

∂k(z, t)

∂t
= PS + PB + Tk − ε (9.13)

Here P = PS + PB is the rate of production of unresolved kinetic energy (KE), and

Tk = − ∂

∂z
w′

1

2

(
u′2 + v′2 + w′2

)
=

∂

∂z

(
Kk

∂k

∂z

)
(9.14)

is the “turbulent transport” term, modelled (in the closed form on the right) as a gradient-diffusion

process with diffusivity Kk ∝ K. The the KE production rates may be written

PS = − u′w′
∂u

∂z
− v′w′

∂v

∂z
= K

[ (
∂u

∂z

)2

+

(
∂v

∂z

)2
]

(9.15)

PB =
g

T0
w′T ′ = − g

T0

K

Pr

(
∂T

∂z
− γd

)
≡ − g

T0

K

Pr

∂θ

∂z
(9.16)

where (again) the closed form exploits the gradient-diffusion approximation for the unresolved

fluxes (the turbulent Prandtl number Pr = K/Kh is the ratio of the eddy diffusivities for momen-

tum and heat, so Kh = K/Pr). Note that the buoyancy part can be a source or a sink for KE in

the unresolved scales, according to the sign of the unresolved heat flux. In unstable stratification

the heat flux is positive and buoyant production is a source for KE. The opposite is true at night,

explaining why the surface layer may become very quiescent at night, unless shear production is
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maintained large by a large free-atmosphere wind at the top of the ABL. It is helpful to note that

in the surface layer (say, z . 50− 100 m) to within a good approximation

PB
PS

=
z

L
, (9.17)

which gives us a useful interpretation of the MO length (depth of the layer of shear-dominated

turbulence).

Returning to eqn (9.13), ε is called the turbulent kinetic energy (TKE) dissipation rate, and

quantifies the rate of conversion of KE to heat due to working by viscous forces. It was modelled

in the RFE model (in accordance with widespread custom) as

ε =
k3/2

λe
(9.18)

where λe is called the equilibrium length scale (discussed below). This formula can be seen to be

dimensionally correct, and says that the more energy present, the faster its rate of conversion to

heat. The other term in the evolution equation for k is called “turbulent transport,” and actually

the diffusion form shown for it is just a model, but a nice model because it results in the k-eqn

containing a diffusion operator - and consequently nice numerical behaviour, filtering of short

waves, etc.

The mixing lengths were related by

dλ

dt
=

λe − λ

τ
(9.19)

where τ is some timescale. This simply says that the lengthscale λ is always evolving towards an

equilibrium value, λe, the latter being a specified continuous function of height (measured relative

to ABL depth, ie. z/h) and a discontinuous (categorical) function of stratification (unstable or

stable).



Chapter 10

Lagrangian modelling of dispersion due
to unresolved velocity field

What is often called “eddy diffusion”, and modelled as such, is in reality a convection process, better

called “turbulent convection” or “convection by the unresolved flow”. The word “dispersion” is

preferable to “diffusion”, for it encodes one’s recognition that the process is not a diffusion process.

We will consider the dispersion of a non-buoyant and non-reactive species whose instantaneous

concentration is c. It is evident that in the context of turbulent or unresolved flow, there is prospect

of success only for a theory of concentration statistics. So we shall be focused on modelling the

mean concentration (C or equivalently c).

The mass conservation equation is:

∂c

∂t
= −∇ · (~u c − D ∇c) +Q (10.1)

and we already know that if we perform a Reynolds decomposition c = C + c′ (etc.) then we will

find
∂C

∂t
= − ∂

∂xi

(
ui C + u′ic

′
)

(10.2)

(where I have dropped the molecular diffusion term, and assumed there is no in-situ production).

The term ∂u′ic
′/∂xi is the flux of c carried by the unresolved motion (turbulent or unresolved flux),

and its divergence impacts the evolution of the mean (resolved) concentration. The eddy diffusion

model introduces a closure assumption, viz.

u′ic
′ = − Kij

∂C

∂xj
(10.3)

There is no a priori reason not to regard the eddy diffusivity as a tensor; however this is rarely

found to be necessary, and more typically the eddy-diffusion model (K-theory) is expressed

u′c′ = −Kx
∂C

∂x

v′c′ = −Ky
∂C

∂y

w′c′ = −Kz
∂C

∂z
(10.4)

63
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where these K’s are scalar eddy diffusivities ([m2 s−1]), allowed to be different for different directions

of motion.

But the mass conservation equation can also be written

dc

dt
= D ∇2c+ Q (10.5)

In general, transport by (true, ie. molecular) diffusion can be neglected relative to convection

provided the Peclet number Pe = U L
D
� 1 where U,L are velocity and length scales of the

turbulence. Therefore, provided there are no in-situ sources or sinks of c,

dc

dt
= 0 (10.6)

This is the basis for the Lagrangian approach to turbulent dispersion. It says that away from any

source, concentration is constant along trajectories. If a fluid element is at t = 0 “tagged” with

concentration C0, its concentration will remain constant at c = C0 - or almost so, except for a slow

“leakage” through the diffusion term on the rhs.

Consider a point source emitting N particles (or kilograms) per second, and a volume V

downstream. Any given particle, say particle-i, may or may not pass through volume V . Let ti be

the time it spends in V (perhaps composed of many intervals of occupancy separated by periods

of absence from V ). Then if t is the average time a particle spends in V, the mean concentration

therein is simply:

C =
N t

V
(10.7)

Thus if we can calculate trajectories, we can calculate mean concentrations.

Notation for Lagrangian variables

In the preceding work we had sometimes used upper case symbols to distinguish averages, e.g. the

mean velocity along the x-axis was sometimes labelled u and sometimes U .

In the context of Lagrangian methods we shall reserve upper case symbols to designate the

position and velocity of a particle1, viz. the height and the vertical velocity of a particle are

(Z, W ).

10.1 Taylor’s Lagrangian Theory

Taylor’s (1921) analytical theory for dispersion in homogeneous turbulence shows up the weakness

in the Eulerian approach, and suggests the important factors in constructing a Lagrangian model.

1We shall restrict our attention to the motion of “particles” of passive tracer, i.e. particles that are non-buoyant.
We can think of these particles as being “marked” fluid elements, where a “fluid element” is a tiny finite volume
of the fluid whose characteristic dimension is very large compared to the mean free path, yet very small compared
to the smallest scales of convective motion (i.e. fluid element dimension is much smaller than the diameter of the
smallest eddies).



CHAPTER 10. LAGRANGIAN APPROACH TO DISPERSION 65

Consider the vertical motion (there is nothing special about our choice of the vertical axis) of a fluid

element which is marked purple and released at z = t = 0 into an infinite domain of homogeneous

and stationary turbulence2. At subsequent times (t) its vertical coordinate is:

Z =

∫
0

t′=t

W (t′) dt′ (10.8)

where W (t′) is the particle velocity. This vertical velocity is by definition

W (t′) =

(
dZ

dt

)
t=t′

(10.9)

Now we may write
dZ2

dt
= 2 Z(t)

dZ

dt
(10.10)

If we consider the release of many particles in such a way that they sample many realisations of

the transporting velocity field, we may define an ensemble average value for any property of these

fluid elements at any time t since release. For example, Z2, “mean square Z,” denotes the mean

value (in an ensemble average sense) of the square of the particle displacement along the z-axis at

time t since release. Obviously this somehow relates to spread, and we will define the “spread” as:

σz =
√
Z2 (10.11)

In fact σz is the standard deviation of the concentration distribution along z. The particle position

(transition) probability density function p(z, t|0, 0), [m−1] is defined such that p(z1, t|0, 0)dz is the

probability that the particle released at z = t = 0 is at later time t between z1−dz/2 and z1+dz/2.

Often this (transition) probability density will be called simply the concentration (but note again

that it is a density on a line, rather than in a volume). Clearly it must satisfy∫
−∞

∞
p(z, t|0, 0) dz = 1 (10.12)

since the particle must lie somewhere on the z-axis. Now by the usual rules of probability, the

mean square particle displacement is

Z2(t) =

∫
−∞

∞
z2 p(z, t|0, 0) dz (10.13)

and σz is just the standard deviation of the concentration distribution.

Now we return to derivation of a prediction for σz. The ensemble-averaging operation we

2In an alternative and broader terminology, the prescription is that velocity statistics of the unresolved motion
do not vary in space or time.
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assume as usual to commute with differentiation or integration. Then

dZ2

dt
=

dZ2

dt

= 2 Z
dZ

dt

= 2 W (t)

∫
0

t′=t

W (t′) dt′

= 2

∫
0

t′=t

W (t) W (t′) dt′ (10.14)

Now define a Lagrangian velocity autocorrelation coefficient

R(t, t′) =
W (t) W (t′)

σw2
(10.15)

which, defining τ = t− t′, may be re-written:

R(t′, τ) =
W (t′) W (t′ + τ)

σw2
(10.16)

But statistics of stationary turbulence are independent of any particular “starting time” t′, so that

R(t′, τ) = R(τ) (and in fact it is also true that R(−τ) = R(τ). Therefore, noting dτ = −dt′ and

τ = 0 when t′ = t and τ = t when t′ = 0, we have:

dZ2

dt
= 2 σw

2

∫
0

τ=t

R(τ) dτ (10.17)

This is Sir Geoffrey Ingram Taylor’s famous result for the rate of increase of mean square

particle displacement, which is revealed to depend on the Lagrangian velocity autocorrelation

function. Taylor’s solution does not tell us the form of the concentration distribution, but gives

us the second moment of that unknown distribution.

Note that we can define a Lagrangian integral time scale from R(τ) as

TL =

∫
0

τ=∞
R(τ) dτ , (10.18)

i.e. as the area underneath the curve R(τ).

10.1.1 Comparison with Classical Eddy-Diffusion Solution

Remember we are considering the time-dependent evolution of the vertical position of a particle

released at z = t = 0, and we aim to determine ensemble mean statistics (average over many trial

releases). Now with the eddy diffusion closure the governing mass conservation equation reduces

to3

∂C

∂t
+ u

∂c

∂x
=

∂

∂x

(
Kx

∂C

∂x

)
+

∂

∂y

(
Ky

∂C

∂y

)
+

∂

∂z

(
Kz

∂C

∂z

)
(10.19)

3I have assumed the resolved velocity field to be uni-directional and aligned with the x-axis, i.e. ui = (u, 0, 0).
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where (of course) we have assumed there is no in-situ production or destruction (Q = 0), and

neglected molecular transport. Now let us set the mean velocity to zero, and assume the K’s are

independent of position - homogeneous turbulence. Furthermore, since we don’t care where in x, y

the particle is, we can define a new concentration C∗[m
−1]

C∗(z, t) =

∫
−∞

x=∞ ∫
−∞

y=∞
C(x, y, z) dx dy (10.20)

Thus C∗ is the earlier-mentioned probability density p(z, t|0, 0) for particle position, in the sense

that C∗(z1, t)dz is the probability that a particle released at z = t = 0 is at time t lying in the

range z1 − dz/2 to z1 + dz/2. By performing the double integral in x, y on the mass conservation

equation we find C∗ satisfies:
∂C∗
∂t

= Kz
∂2C∗
∂z2

(10.21)

It is easy to show that the solution to this equation that satisfies

C∗(z, 0) = δ(z − 0) (10.22)

(unit release at t = z = 0) is the Gaussian (ie. Normal) distribution

C∗(z, t) =
1√

2π σz
e
− z2

2σz2 (10.23)

with standard deviation σz(t) =
√

2 Kz t.

Observations show that the concentration distribution is more or less Gaussian, for all distances

from the source (but remember: this is an unbounded domain of homogeneous turbulence). But

the really important point is that this result states that

∂σz
2

∂t
= 2 Kz (10.24)

while G. I. Taylor’s result, which is exact, says

dZ2

dt
= 2 σw

2

∫
0

τ=t

R(τ) dτ . (10.25)

To reconcile these results we must have:

Kz = σw
2

∫
0

τ=t

R(τ) dτ (10.26)

The eddy diffusivity, which we would have liked to be a property of the turbulence, turns out

to be a function of the time since the particle was released: and only when t � TL (in the “far

field”) does the eddy diffusivity assume a value independent of t, namely the “far field limit”

K∞ = σw
2 TL.

Thus we conclude the classical diffusion theory, which predicts a plume width σz increasing as
√
t for all t is wrong at short travel times. In truth, σz goes linearly with t in the “near field”
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(when t� TL). In the near field, travel time is so short that the particle flies with an essentially

constant velocity - that it assumed upon release.

Taylor’s result for the time-derivative of Z2 may be further integrated to obtain:

z2 = 2 σw
2

∫
0

t

(t− τ) R(τ) dτ . (10.27)

If, as is often assumed, the autocorrelation function is exponential with timescale TL, ie.

R(τ) = e
− τ

TL (10.28)

the result for the spread specialises to:

z2

2σw2
= t TL − T 2

L

[
1− e

− t
TL

]
. (10.29)

10.1.2 Asymptotic results

The following results are valid for a general autocorrelation function.

Small time limit (near field): If t � TL then R(τ) = 1 throughout the required integral. It

follows that:

z2 = σw
2 t2 (10.30)

or σz = σw t. The plume spreads linearly in time for short times after release: that is because for

short times the spread is not a diffusion process, but simply an advection at a constant random

starting velocity.

Large time limit (far field): If t� TL then σz =
√

2σw2TL
√
t.

10.1.3 What is important about G.I.Taylor’s result and when is K-
theory valid?

• If we insist on using an eddy diffusivity K to close the mass conservation equation, we have to

accept that, of the totality of particles seen at a point z, a sub-ensemble of particles having

been released at time t1 may have a different diffusivity from a sub-ensemble of particles

that were released at t2. This is logically absurd, the result of K-theory being fundamentally

wrong.

• The statistical evolution of concentration in this simple turbulence is completely governed

by two statistical properties of the turbulence: σw, TL.

• The “far field” diffusivity is K∞ = σw
2 TL.

We expect K-theory to be useful when the turbulence is “fine-grained” relative to the length

scale over which there is curvature in the concentration distribution (Corrsin, 1974).
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10.2 Modern single-particle Lagragian stochastic models

Taylor’s analytical solution is highly restricted in its validity. With the arrival of computers came

the possibility of “Monte-Carlo” type Lagrangian simulations that treat dispersion by literally

computing the paths of computational particles. The name “Lagrangian stochastic model” has

emerged as the most common term for what is also known as the trajectory-simulation, random-

flight, random-walk, or (occasionally) Markov-chain method.

We shall consider the modelling of dispersion in a flow whose velocity statistics are known, and

horizontally-uniform. For the time being we will concentrate on motion along a single dimension

(z). Evidently if we can generate a sequence for the vertical velocity W of a “particle” we can

generate a set of trajectories.

These are not real trajectories. Then we must ask, what properties of real trajectories, ie. what

statistical properties of the Lagrangian velocity W , is it necessary to mimic correctly? Surely, from

previous considerations, σw and TL. The first LS models were heuristic, but due to the contribution

of Thomson (1987) we now have rigorous criteria.

10.2.1 Zeroth- and first-order LS models

The “zeroth-order” LS model for motion along a single axis (say z, the vertical), is a random

walk in position (the drunkard’s walk, or Random Displacement Model, RDM). Over each time

increment dt the increment dZ in particle position is given by:

dZ = a dt+ b dξ (10.31)

where a, b are deterministic coefficients, and dξ is drawn randomly from a Gaussian distribution

with mean zero, and (by convention) variance dt. This model is easily shown to be equivalent to

the treatment of turbulent convection as a diffusion process, and for stationary turbulence

a =
∂K

∂z
b2 = 2 K (10.32)

The RDM model is fundamentally wrong, and manifests as such close to a source. (For a recent

study of the RDM model see Wilson and Yee 2007).

In the Random Displacement model, Xi is treated as Markovian, ie. correlation of particle

velocity from one timestep to the next is ignored: thus the problem that the model is invalid

for travel times short compared to the typical velocity correlation timescale. This deficiency is

remedied in the “first-order” LS model, wherein the Markovian state variable is (Xi, Ui), and the

velocity evolves in time according to a “generalised Langevin equation” (Thomson, 1987),

dUi = ai dt+
√
C0 ε dξi (10.33)
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where dUi are the increments over timestep dt in the three components of Lagrangian velocity, ε is

the rate of dissipation of the kinetic energy of the unresolved flow (TKE), and C0 is a dimensionless

and (supposedly) universal constant (prescription of the universal constant C0 in an LS model is

equivalent to the prescription of the turbulent Schmidt number Sc in a K-theory model). The 1st-

order LS model correctly predicts the rate of dispersion even in the near field of a source, where

travel time t is not large w.r.t. TL, in contradistinction to the RDM and to Eulerian models. (For

a review of Lagrangian models, see Wilson and Sawford 1996).

10.2.2 Time step for (1st order) Lagrangian stochastic simulations

Integral (outer) scales measure typical spatial and temporal persistence of the unresolved (turbu-

lent) velocity. In stationary, homogeneous turbulence, the Lagrangian integral timescale can be

determined from the velocity variance (σw
2) and the TKE dissipation rate (ε) as (Tennekes, 1979)

TL =
2 σw

2

C0 ε
(10.34)

In a simulation we should ensure the timestep dt << TL

10.2.3 Thomson’s well-mixed constraint on first-order LS models

Suppose we would like to determine the coefficient a in the generalized Langevin equation for

vertical motion

dW = a dt+ b dξ (10.35)

where the coefficient b is known (b =
√
C0 ε).

Let us define p(z, w, t) as the density function (in z − w space) for particle location. For

example, for release at z = t = 0 with a random velocity from the Eulerian pdf ga(w),

p(z, w, 0) = δ(z − 0) ga(w) (10.36)

Now, being a statistic, p(z, w, t) undergoes a deterministic evolution. Over discrete intervals ∆t,

it evolves according to the “Chapman-Kolmogorov” equation

p(z, w, t+ ∆t) =

∫
z0

∫
w0

p (z, w, t+ ∆t|z0, w0, t) p (z0, w0, t) dz0 dw0 (10.37)

which expresses conservation of probability (at any time after release, the particle must exist

somewhere with some velocity). It is possible to derive from the CK equation a differential equation

for the evolution of the density function. Provided the random forcing (dξ) is Gaussian (which it

must be, on other grounds), the differential equation corresponding to the stochastic model (eqn

10.35) is the “Fokker-Plank equation,”

∂p(z, w, t)

∂t
= − ∂

∂z
(w p)− ∂

∂w
(a p) +

1

2

∂2

∂w2

(
b2 p
)

(10.38)
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The rhs is the divergence of a probability flux (in z − w space): w p is the flux along the z-axis,

while a p− 1
2
∂(b2 p)/∂w is the flux along the w-axis.

Now, we can apply our LS model to any initial distribution of tracer. Suppose we apply it to

the particular case where the tracer is initially well-mixed in the flow,

p(z, w, 0) ∝ ρ(z) ga(z, w) (10.39)

where I have implicitly assumed stationarity of the flow, since the Eulerian velocity pdf ga lacks

time-dependence. Assume the fluid density ρ is constant. Then, p(z, w, 0) ∝ ga(z, w) and, since

the particles are initially well-mixed, they must remain so, ie. p(z, w, t) ∝ ga(z, w). Hence, ga

must be a stationary solution to the FP equation,

∂

∂w
(a ga) = − ∂(w ga)

∂z
+

1

2

∂2 (b2 ga)

∂w2
(10.40)

Since b is known (see above), this result determines the conditional mean acceleration a, for

a specified Eulerian velocity pdf! This is a very powerful result, constraining the Lagrangian

stochastic model.

10.2.4 Unique 1-d LS Model for Gaussian Inhomogeneous Turbulence

It is usual to treat surface-layer turbulence in the atmosphere as Gaussian, but vertically-inhomogeneous.

And except very close to ground (or within a canopy; a case we exclude here), the mean velocity is

large w.r.t. the typical fluctuations (u′): thus dispersion in the streamwise direction is frequently

ignored, or at least, u′ is treated as independent of w. This leads to a focus on 1-component

models, for the particle’s vertical velocity, W.

The Eulerian velocity pdf, if assumed Gaussian (with zero mean), is

ga(z, w) =
1√

2π σw(z)
exp

(
− w2

2σw2

)
(10.41)

It follows that the (unique) well-mixed, 1-component (here W ) model for stationary Gaussian

turbulence (Thomson, 1987) is

a = − C0 ε(z)

2σw2(z)
W +

1

2

∂σw
2

∂z

(
w2

σw2
+ 1

)
b =

√
C0 ε(z) (10.42)

The influence of atmospheric stratification enters through the turbulence parameters and the mean

velocity profile u(z).

In inhomogeneous turbulence a Lagrangian timescale TL(z) can still be defined through eqn

(10.34), but can no longer be interpreted as an integral time scale. In the neutral surface layer,

where σw ≈ 1.3 u∗, inhomogeneity arises solely through the TKE dissipation rate.
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It can be shown that the model compared in detail with the Project Prairie Grass field observa-

tions by Wilson et al. (1981; WTK) is the discrete-time version of eqn (10.42). Using a time scale

parameterisation equivalent to C0 = 3.1, which value accords with latest estimates from simpler

flows, WTK showed this LS model to be in excellent agreement with the observations. They also

obtained good agreement with unstable and stable PPG runs, using the parameterisations (which

are consistent with C0 = 3.1 in neutral conditions):

2 σw
2

C0 ε
= TL(z) =

0.5 z

σw

(
1− 6

z

L

) 1
4
, L < 0

2 σw
2

C0 ε
= TL(z) =

0.5 z

σw

(
1 + 5

z

L

)−1
, L > 0 (10.43)

where L is the Monin-Obukhov length. These formulae can be used to parameterise the compound

variable C0ε in (modern) LS models of the equilibrium atmospheric surface layer.

We have focused here on vertical dispersion, and ignored the important question of the impact

of the fluctuating alongwind component u′, which is correlated with the vertical velocity, and of the

lateral turbulence component. The inclusion of u′ and/or v′ presents a difficult problem. There is

firstly the difficulty that as yet we do not have a unique well-mixed 2- or 3-dimensional LS model,

even if we are prepared to accept Gaussian velocity pdfs.

The second difficulty of including U, V , a difficulty not peculiar to LS modelling, is that u′

and v′ contain energy at much lower frequencies than w - wind direction and strength change

on a continuous range of scales, from the almost-microscopic (Kolmogorov) scale, up through

scales of order 10 min (cloud/meso scale), to hourly and daily scales (changing large scale pressure

patterns). Therefore no matter what our choice of averaging time, there is always the likelihood of

an irregular and possibly multi-modal distribution of material along the horizontal direction(s). In

general the (mean) mass distribution in x, y cannot be sharply predicted unless we can forecast the

mesoscale fluctuations in wind direction. Practical means of accomplishing this involve prediction

of the mesoscale wind variations with a prognostic mesoscale wind-field model and coupling these

to a LS model for the turbulence.

10.2.5 Reflection at Boundaries

Except in cases that permit analytic solution, an LS model will be implemented with finite timestep

∆t, and it may be necessary to tack onto the model an algorithm that assures particles remain in

the computational domain (not necessarily only because the timestep is finite). The best available

criterion remains the w.m.c., whose satisfaction may be checked simply by calculating (numerically)

the evolution of an initially well-mixed tracer distribution.

For example for surface-layer simulations we may choose to reflect trajectories at height zrefl ≥
z0, where typically there is little loss of accuracy with zrefl ∼ 10z0. Suppose that at the end of a

timestep a particle has moved to a position Z < zrefl. The reflection strategy is simply to correct
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the position and velocity as if the particle, like a billiard ball, had bounced off an apparent wall

at zrefl, viz.

Z ← 2zrefl − Z

W ← − W (10.44)

10.2.6 LS models applicable in disturbed flows

Throughout this section we have assumed the flow and turbulence to be horizontally-uniform, so

that the joint pdf for the Eulerian velocity fluctuations ga(u
′, v′, w′; z) is a function only of the

height z. In a disturbed flow, ga = ga(~u
′, ~x).

Provided an analytical description of ga is given, it remains possible to derive a well-mixed LS

model for the disturbed flow - and this is a huge advance over the Eulerian description, where any

such attempt would be desperately heuristic.

Suppose that ga remained Gaussian. Then the turbulence would be described by the velocity

standard deviations (σu = σu(x, y, z), etc.) and covariances like (u′w′ = u′w′(x, y, z)). The LS

model will involve not only vertical derivatives of flow statistics, but also the horizontal derivatives,

such as ∂σu/∂x, ∂u′w′/∂y and so on.

Of course, such an LS model demands that all these flow statistics be provided - it must be

“fed” this information. It is no mean feat to supply such data. Measurements are out of the

question. The only possibility, if it must be done, is a judicious combination of a sufficient number

of measurements in the disturbed flow that one can prove (establish the correctness of) a disturbed

flow model, which can then be used interpolatively and extrapolatively to “procure” all the needed

derivatives, specifically, in the case where ga is presumed Gaussian, all components of ∂ui/∂xj and

∂/∂xku′i u
′
j.
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