EAS 572

Tables $(1,2)$ give the mean wind (U) and temperature (T) profiles observed on a tower at Ellerslie, Alberta, in the middle of a flat field of sparse stubble during a fifteen minute period beginning 1345 MDT on June 1, 2001. Windspeed was measured with cup anemometers, which should be assumed to have overestimated the mean speed by 8%. Mean temperature differences relative to a reference level ($z=0.29 \mathrm{~m}$) were measured by shielded, ventilated thermocouples. One may assume the characteristic uncertainties in windspeed and temperature difference are $\delta_{u}=0.05 \mathrm{~m} \mathrm{~s}^{-1}$ and $\delta_{T}=0.1^{\circ} \mathrm{C}$.

A wind vane determined that the mean wind direction (expressed in the ordinary compass convention) $\beta_{v}=138^{\circ}$. A sonic anemometer at $z=2.2 \mathrm{~m}$ determined the data given in Table (3).

Aim: The mean profiles define the state of the undisturbed ASL. From the given data, estimate for this period: the friction velocity u_{*}, the temperature scale T_{*}, the Monin-Obukhov length L, the sensible heat flux density ${ }^{1}$ Q_{H}. Plot the given mean profiles, along with the theoretical profiles implied by your derived u_{*}, T_{*}.

From the sonic data compute alternative estimates $u_{*}^{s}, T_{*}^{s}, L^{s}$ and mean wind direction $\beta_{s}=\arctan (V / U)$ (correct for the orientation of the sonic frame, ie. add $\left.90^{\circ}\right)$. Comment on the measured values of $\sigma_{u} / u_{*}, \sigma_{v} / u_{*}, \sigma_{w} / u_{*}$ in the context of MO similarity theory.

[^0]
Profile Fitting Method

Correct the cup anemometers for overspeeding. Create the set of measured differences $\Delta U_{z}{ }^{m}=U_{z}-U_{r e f}, \Delta T_{z}{ }^{m}=T_{z}-T_{r e f}$ (etc.) where $U_{r e f}$ is the windspeed at a reference height, such as $z=0.65 \mathrm{~m}$. To each of these differences there correspond (for any guess of the scales u_{*}, T_{*}) theoretical differences $\Delta U_{z}{ }^{t}=\left(U_{z}-U_{r e f}\right)^{t}$ (etc.) that may be calculated from the Monin-Obukhov similarity profiles. Your scales should be optimal in the sense that they minimise the dimensionless residual:

$$
\begin{align*}
R & =\frac{\sum_{1}^{N_{U}}\left(\Delta U^{m}-\Delta U^{t}\right)^{2}}{\delta u^{2}} \\
& +\frac{\sum_{1}^{N_{T}}\left(\Delta T^{m}-\Delta T^{t}\right)^{2}}{\delta T^{2}} \tag{1}
\end{align*}
$$

Here $\delta u, \delta T$ are estimated instrument inaccuracy. In the present case the number of velocity differences is $N_{U}=4$ and $N_{T}=2$.

Data

Table 1: Profile of (uncorrected) mean cup windspeed, Ellerslie (AB), 13451400 hrs, 1 June, 2001.

$$
\begin{array}{ll}
z[\mathrm{~m}] & U(z)\left[\mathrm{m} \mathrm{~s}^{-1}\right] \\
\hline 6.05 & 11.53 \\
3.6 & 10.52 \\
2.12 & 9.68 \\
1.12 & 8.28 \\
0.65 & 7.45
\end{array}
$$

Table 2: Profile of mean temperature difference from reference temperature, Ellerslie (AB), 1345-1400 hrs, 1 June, 2001.

$z[\mathrm{~m}]$	$T(z)-T(0.29 \mathrm{~m})\left[{ }^{\circ} \mathrm{C}\right]$
5.75	-3.09
1.35	-1.52
0.29	0.00

Table 3: Statistics from the sonic anemometer at $z=2.2 \mathrm{~m}$ over same interval. The sonic was 'facing' east, thus when $v=0$ wind direction is 90°. In principle, the statistics should be rotated into a frame for which $W=0$, but we shall neglect this step.

Property	Value [MKS units]
$\overline{\sqrt{u^{2}+v^{2}}}$	9.17
U	3.06
V	1.88
W	-0.23
$\frac{T}{\overline{u^{\prime 2}}}$	16.8
$\frac{v^{\prime 2}}{\frac{w^{\prime 2}}{u^{\prime} w^{\prime}}}$	3.191
$\frac{v^{\prime} w^{\prime}}{w^{\prime} T^{\prime}}$	-0.557
	-0.225
	0.287

[^0]: ${ }^{1}$ The mean temperature T_{0} during this period was about $21^{\circ} \mathrm{C}$, and for the purpose of calculating the density ρ_{0} you may assume the atmospheric pressure $p=93 \mathrm{kPa}$.

