EAS 572

Eulerian Simulation of Dispersion in the ASL

Write a program to calculate the mean concentration field $C=C(x, z)$ downwind from a continuous line source at $x=y=0, z=h_{s}$ in the horizontallyuniform surface layer. Assume C is the solution of:

$$
\begin{equation*}
\frac{\partial}{\partial x}(U(z) C)=\frac{\partial}{\partial z}\left(K(z) \frac{\partial C}{\partial z}\right) \tag{1}
\end{equation*}
$$

where the profiles $U(z), K(z)$ are those of Monin-Obukhov similarity theory. For the eddy diffusivity assume

$$
\begin{equation*}
K=\frac{k_{v c} u_{*} z}{\phi_{c}}=\frac{1}{S_{c}} \frac{k_{v} u_{*} z}{\phi_{c}} \tag{2}
\end{equation*}
$$

where S_{c} is the turbulent Schmidt number.
Discretize using grid-lengths $\Delta x \sim 0.5 m, \Delta z \sim 0.2 m$. Compare your calculated solution at $x=100 \mathrm{~m}$ with the Project Prairie Grass run 33 (Tables $1,2)$, with values $S_{c}=(1,0.63)$.

Of course you need profiles for mean wind and diffusivity, for which you need u_{*}, L, z_{0}. Use your program from assignment 2 to determine u_{*}, L from the meteorological information. You may assume the roughness length $z_{0}=$ 0.75 cm .

To solve the mass conservation equation, the algorithm suggested in class is:

$$
\begin{equation*}
A_{I, J}^{C} C_{I, J}=A_{I, J}^{N} C_{I, J+1}+A_{I, J}^{S} C_{I, J-1}+B_{I, J} \tag{3}
\end{equation*}
$$

where the $A_{I, J}$ are the "neighbour coefficients", and $C_{I, J}$ is the concentration matrix. This is a marching problem $\left(C_{0, J}=0 \forall J\right)$, implicit along the J (vertical)-axis. You will need to use a Tridiagonal Matrix Inversion Algorithm (see Numerical Recipes).

Refinements for next time!

Provide a flowchart that, in conjunction with your table of symbols, unambiguously defines your algorithm.

Experiment with the sensitivity of the computed concentration profile to gridlengths $\Delta x, \Delta z$.

Table 1: Normalized cross-wind integrated concentration $\frac{z_{0} u * \chi}{k_{v} Q}$ observed at distance $x=100 \mathrm{~m}$ from the source (height $h_{s}=0.46 \mathrm{~m}$) in Project Prairie Grass run 33.

$z[m]$	$\frac{z_{0} u_{* \chi}}{k_{v} Q}$
17.5	$2.4 \mathrm{E}-6$
13.5	$9.04 \mathrm{E}-6$
10.5	$2.20 \mathrm{E}-5$
7.5	$5.25 \mathrm{E}-5$
4.5	$1.08 \mathrm{E}-4$
2.5	$1.73 \mathrm{E}-4$
1.5	$2.02 \mathrm{E}-4$
1.0	$2.18 \mathrm{E}-4$
0.5	$2.30 \mathrm{E}-4$

Table 2: Micrometeorological data for Project Prairie Grass run 33.

$z[\mathrm{~m}]$	$U,[\mathrm{~m} / \mathrm{s}]$	$T,[C]$
16	10.63	-
8	-	27.88
4	8.48	28.16
2	7.56	28.73
1	6.90	29.16
0.5	5.80	29.64
0.25	4.84	30.07
0.12	-	30.61

