Eulerian Simulation of Dispersion in the ASL

Write a program to calculate the mean concentration field C = C(x, z) downwind from a continuous line source at $x = y = 0, z = h_s$ in the horizontally-uniform surface layer. Assume C is the solution of:

$$\frac{\partial}{\partial x} \left(U(z) C \right) = \frac{\partial}{\partial z} \left(K(z) \frac{\partial C}{\partial z} \right) \tag{1}$$

where the profiles U(z), K(z) are those of Monin-Obukhov similarity theory. For the eddy diffusivity assume

$$K = \frac{k_{vc}u_*z}{\phi_c} = \frac{1}{S_c} \frac{k_v u_*z}{\phi_c}$$
 (2)

where S_c is the turbulent Schmidt number.

Discretize using grid-lengths $\Delta x \sim 0.5m, \Delta z \sim 0.2m$. Compare your calculated solution at x = 100m with the Project Prairie Grass run 33 (Tables 1, 2), with values $S_c = (1, 0.63)$.

Of course you need profiles for mean wind and diffusivity, for which you need u_*, L, z_0 . Use your program from assignment 2 to determine u_*, L from the meteorological information. You may assume the roughness length $z_0 = 0.75$ cm.

To solve the mass conservation equation, the algorithm suggested in class is:

$$A_{I,J}^{C} C_{I,J} = A_{I,J}^{N} C_{I,J+1} + A_{I,J}^{S} C_{I,J-1} + B_{I,J}$$
(3)

where the $A_{I,J}$ are the "neighbour coefficients", and $C_{I,J}$ is the concentration matrix. This is a marching problem $(C_{0,J} = 0 \ \forall J)$, implicit along the J (vertical)-axis. You will need to use a Tridiagonal Matrix Inversion Algorithm (see *Numerical Recipes*).

Refinements for next time!

Provide a flowchart that, in conjunction with your table of symbols, unambiguously defines your algorithm.

Experiment with the sensitivity of the computed concentration profile to gridlengths Δx , Δz .

Table 1: Normalized cross-wind integrated concentration $\frac{z_0 u_* \chi}{k_v Q}$ observed at distance x=100m from the source (height $h_s=0.46m$) in Project Prairie Grass run 33.

z[m]	$\frac{z_0 u_* \chi}{k_v Q}$
17.5	2.4E-6
13.5	9.04E-6
10.5	2.20E-5
7.5	5.25E-5
4.5	1.08E-4
2.5	1.73E-4
1.5	2.02E-4
1.0	2.18E-4
0.5	2.30E-4

Table 2: Micrometeorological data for Project Prairie Grass run 33.

$z[\overset{\circ}{m}]$	U, [m/s]	T, [C]
16	10.63	-
8	-	27.88
4	8.48	28.16
2	7.56	28.73
1	6.90	29.16
0.5	5.80	29.64
0.25	4.84	30.07
0.12	-	30.61