EAS 572

We shall consider the treatment of atmospheric dispersion in the horizontallyuniform atmospheric surface layer whose statistics were the subject of Assignment 2 (note: to proceed you will have to determine the roughness length z_{0} corresponding to your optimal solution for $\left.u_{*}, L\right)$.

Alice Ou: forward simulation using zeroth-order model

Write a computer algorithm to compute the mean concentration at $x=100$ $\mathrm{m}, z=(0,2,10) \mathrm{m}$ due to a continuous ground-level line source of passive tracer at $x=x_{s}=0, z=z_{s}=z_{0}$. The strength of the source is $Q=$ $10^{-5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$.

Assume particle position (X, Z) evolves in time with steps

$$
\begin{align*}
d X & =\bar{u}(Z(t)) d t \tag{1}\\
d Z & =\frac{\partial K}{\partial z} d t+\sqrt{2 K} d \xi \tag{2}
\end{align*}
$$

where $d \xi$ is a random number drawn from a Gaussian distribution $N(0, d t)$, ie. with zero mean and variance $d t$, where the timestep $d t$ should be "small". The mean wind profile $\bar{u}(z)$ is that which you have computed in Assignment 2 , ie. the theoretical profile that corresponds to your optimal u_{*}, L. The eddy diffusivity should be specified as:

$$
\begin{equation*}
K=\frac{1}{S_{c}} k_{v} u_{*} z \tag{3}
\end{equation*}
$$

where $k_{v}=0.4$ is the von Karman constant, and S_{c} is the turbulent Schmidt number. Assume $S_{c}=0.63$, and examine your solution for several values of
the timestep, $\Delta t=0.1,1,10 \mathrm{~s}$. Perform a calculation of the total horizontal flux and check against source strength. Estimate concentration in detectors whose dimension $\Delta x=\Delta z=0.1 \mathrm{~m}$.

The zeroth-order LS model is equivalent to an eddy-diffusion treatment. Therefore please compare your solution with the analytical K-theory solution given as eqns (17.31-17.33). Interpret your comparison, remembering that the analytic solution (which is valid for the case $S_{c}=0.63$) neglects the influence of instability.

John Postma: simulation using 1st-order model

On the basis of your choice of 1st-order LS model, estimate the mean concentration and concentration variance at $z=2 \mathrm{~m}$ due to a continuous (and perfectly steady) ground-level area source of passive tracer at ground level extending upwind from the detection point a distance (fetch) of $X=50 \mathrm{~m}$. The strength of the source is $Q=10^{-7} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$.

Examine the sensitivity of your solution to inclusion/exclusion of the streamwise fluctuation U^{\prime} and (with U^{\prime} retained) to the inclusion /exclusion of the covariance $-u_{*}^{2}$.

