Tables (1-4) ${ }^{1}$ give various micrometeorological statistics observed during a period of unstable stratification (22 May 2003) at Ellerslie (Alberta) ${ }^{2}$. Cup anemometers and shielded, ventilated thermocouples measured the vertical profiles of mean cup windspeed (" S ") and mean temperature ${ }^{3}$ on a mast standing in horizontally-homogeneous flow. The mean profile data (Tables 1, 2) suffice to determine the MOST scaling parameters for each interval, however in addition a three-dimensional sonic anemometer at $z=2 \mathrm{~m}$ on the mast provides an independent and direct estimate of the MOST scales, by manipulation of the statistics it provides (Tables 3, 4). A wind vane on the mast provided the mean wind direction (" θ ") in the compass convention.

Task

For each 15 min interval, analyse the mean profile data on the mast to provide the friction velocity u_{*}, the temperature scale T_{*}, the Monin-Obukhov length L, and the sensible heat flux density ${ }^{4} Q_{H}$ (you will need to write a computer program to do this: the general outline of a method is given below). Plot at least two of the given mean profiles alongside your corresponding theoretical profiles (i.e. those implied by your derived u_{*}, T_{*}).

From the sonic data compute alternative estimates $u_{*}^{s}, T_{*}^{s}, L^{s}$ and mean wind direction $\beta_{s}=\arctan (V / U)\left(\right.$ correct for the orientation of the sonic frame, ie. add $\left.90^{\circ}\right)$.

Appendix: Profile Fitting Method

Create the set of measured differences $\Delta S_{z}{ }^{m}=S_{z}-S_{\text {ref }}, \Delta T_{z}{ }^{m}=T_{z}-T_{\text {ref }}$ (etc.) where $S_{\text {ref }}$ is the windspeed at a reference height, such as $z=0.62 \mathrm{~m}$. To each of these differences there correspond (for any guess of the scales u_{*}, T_{*}) theoretical differences $\Delta S_{z}{ }^{t}=\left(S_{z}-S_{r e f}\right)^{t}$

[^0](etc.) that may be calculated from the Monin-Obukhov profiles ${ }^{5}$. Your scales should be optimal in the sense that they minimize the dimensionless residual:
\[

$$
\begin{aligned}
R & =\frac{\sum_{1}^{N_{S}}\left(\Delta S^{m}-\Delta S^{t}\right)^{2}}{\delta S^{2}} \\
& +\frac{\sum_{1}^{N_{T}}\left(\Delta T^{m}-\Delta T^{t}\right)^{2}}{\delta T^{2}}
\end{aligned}
$$
\]

Here $\delta S, \delta T$ are the estimated characteristic uncertainties in windspeed and temperature difference; assume values $\delta_{S}=0.05 \mathrm{~m} \mathrm{~s}^{-1}, \delta_{T}=0.1^{\circ} \mathrm{C}$. In the present case the number of velocity differences is $N_{S}=3$ and $N_{T}=2$. The simplest computational approach is to use a nested loop: scan through all combinations of u_{*}, T_{*} covering a physically reasonable range, say, $0.05 \leq u_{*} \leq 0.5 \mathrm{~m} \mathrm{~s}^{-1}$ (with interval 0.01) and $-5 \mathrm{~K} \leq T_{*} \leq 0$ (with interval 0.01).

In unstable stratification the mean wind and temperature profiles can be represented as:

Wind

$$
\bar{u}(z)=\frac{u_{*}}{k_{v}}\left[\ln \frac{z}{z_{0}}-\psi_{m}\left(\frac{z}{L}\right)+\psi_{m}\left(\frac{z_{0}}{L}\right)\right]
$$

where ψ_{m} is given in terms of the dimensionless mean shear $\left(\phi_{m}\right)$ as:

$$
\psi_{m}=2 \ln \left(\frac{1+\phi_{m}^{-1}}{2}\right)+\ln \left(\frac{1+\phi_{m}^{-2}}{2}\right)-2 \operatorname{atan}\left(\phi_{m}^{-1}\right)+\frac{\pi}{2}
$$

Temperature

$$
\bar{T}(z)-\bar{T}\left(z_{0}\right)=\frac{T_{*}}{k_{v}}\left[\ln \frac{z}{z_{0}}-\psi_{h}\left(\frac{z}{L}\right)+\psi_{h}\left(\frac{z_{0}}{L}\right)\right]
$$

where

$$
\psi_{h}=2 \ln \left[\frac{1}{2}\left(1+\phi_{h}^{-1}\right)\right] .
$$

For the dimensionless gradients ϕ_{m}, ϕ_{h} in mean velocity and temperature Dyer and Bradley (1982; BLM Vol. 22, 3-19) recommended

$$
\begin{aligned}
\phi_{m}(z / L) & =(1-28 z / L)^{-1 / 4} \\
\phi_{h}(z / L) & =(1-14 z / L)^{-1 / 2}
\end{aligned}
$$

[^1]Table 1: Profiles of (uncorrected) 15 min mean cup windspeed $\left[\mathrm{m} \mathrm{s}^{-1}\right.$] in an undisturbed ASL, Ellerslie (AB), 22 May, 2003 (on all tables, end times are given in Local Standard Time). Measurements have been rounded to nearest $0.01 \mathrm{~m} \mathrm{~s}^{-1}$. The cup anemometers should be assumed to have overestimated the mean speed by 8%, and each value should be corrected accordingly.

HEIGHT

$t_{\text {end }}$	0.62 m	1.57 m	3.07 m	5.02 m

1615	3.24	3.98	4.47	4.83
1630	2.83	3.43	3.80	4.10
1645	3.31	4.09	4.66	5.07
1700	2.52	3.11	3.46	3.73
1715	3.48	4.37	4.95	5.38
1730	2.28	2.82	3.16	3.43
1745	2.94	3.62	4.07	4.43
1800	3.17	3.92	4.46	4.84

Table 2: Profiles of 15 min mean temperature difference $[\mathrm{K}]$ in an undisturbed ASL, Ellerslie (AB), 22 May, 2003. Negative entries imply the upper level is cooler than the lower (reference) level, implying unstable stratification.

$t_{\text {end }}$	$1.31 \mathrm{~m}(-) 0.34 \mathrm{~m}$	$4.25 \mathrm{~m}(-) 0.34 \mathrm{~m}$
1615	-0.92	-1.53
1630	-0.85	-1.34
1645	-0.67	-1.14
1700	-0.80	-1.18
1715	-0.57	-0.92
1730	-0.23	-0.33
1745	-0.22	-0.34
1800	-0.15	-0.20

Table 3: Velocity statistics (MKS units) from the sonic anemometer at $z=2.00 \mathrm{~m}$. The sonic was 'facing' west, thus when $v=0$ wind direction is 270°. In principle, the statistics should be rotated into a frame for which $\bar{w}=0$, but we shall neglect this step. All components of the Reynolds stress tensor $R_{i j} \equiv \overline{u_{i}^{\prime} u_{j}^{\prime}}$ can be computed from the given data.

Table 4: Temperature and heat flux statistics (MKS units) from the sonic anemometer at $z=2.00 \mathrm{~m}$. From these data the eddy heat fluxes can formed as, for example, $\overline{u^{\prime} T^{\prime}}=$ $\overline{u T}-\bar{u} \bar{T}$.

$t_{\text {end }}$	\bar{T}	$\overline{T T}$	$\overline{u T}$	$\overline{v T}$	$\overline{w T}$
1615	19.97	399.2	63.45	33.994	0.42466
1630	19.837	393.96	56.439	17.35	0.054
1645	20.231	409.62	70.755	16.312	0.49237
1700	20.062	402.79	57.626	-5.0379	0.31351
1715	20.499	420.5	81.243	18.17	1.7131
1730	19.9	396.24	44.506	31.641	0.12985
1745	20.043	401.8	57.865	31.548	0.19873
1800	20.189	407.65	71.591	21.223	0.12048

[^0]: ${ }^{1}$ These data are also available in electronic form by downloading a file from the class web site.
 ${ }^{2}$ For details, see Wilson (2004; J. Applied Meteorol. Vol. 43, 1149-1167)
 ${ }^{3}$ Or more precisely, mean temperature differences ($" \bar{T}-\bar{T}_{r e f}$ ") relative to a reference temperature at $z=0.34 \mathrm{~m}$.
 ${ }^{4}$ The mean temperature T_{0} during this period was about $20^{\circ} \mathrm{C}$, and for the purpose of calculating the density ρ_{0} you may assume the atmospheric pressure $p=93 \mathrm{kPa}$.

[^1]: ${ }^{5}$ When you take differences in wind speed or temperature the roughness length will disappear from your MO formulae.

