EAS 572 Assignment 3 (25%) 2010

Lagrangian Simulation of Project Prairie Grass

In the Project Prairie Grass tracer gas dispersion trials (Barad, 1958; Haugen, 1959), sulphur dioxide was released continuously from a nozzle at height $z = h_s = 0.46$ m over a flat prairie, and the resulting 10-min mean concentrations of gas were observed on downstream arcs at radii x = (50, 100, 200, 400, 800) m. Here we will focus on the concentrations observed at x = 100 m, where six 20 m towers sampled mean concentration at multiple heights, providing sufficient information to provide the profile of crosswind-integrated mean concentration

$$\chi(100,z) = \int_{\theta=-\pi}^{\pi} \overline{c}(x,\theta,z) \ r \ d\theta \ . \tag{1}$$

Earlier analyses have shown that absorption of SO₂ by the dry prairie grass can be considered negligible; we shall consider the wind statistics to be given by Monin-Obukhov Similarity Theory (MOST); and that the underlying probability density function $g_a(w)$ for the Eulerian vertical velocity is a Gaussian, with zero mean and known standard deviation σ_w .

Let [X(t), Z(t)] represent the coordinates of a fluid element, and [U, W]its velocity on the radial (i.e. downstream, x) and vertical axes. We shall perform *two-dimensional* simulations of these experiments, making the approximations that (i) radial motion occurs at the local mean cup wind speed; and (ii) the Lagrangian vertical velocity can be simulated using the (unique) one-dimensional, first-order Lagrangian stochastic (LS) trajectory model for Gaussian inhomogeneous turbulence.

By computing trajectories in the x, z plane, compute the vertical profiles of crosswind-integrated concentration at x = 100 m for each of the Project Prairie Grass dispersion experiments documented in Tables (1, 2). Compare (and comment on) the simulated and measured concentration profiles.

Further details of the LS model

Assume particle position (X, Z) evolves in time with velocity (U, W) where

$$U = \overline{u}(Z(t)) \tag{2}$$

(adopt appropriate MOST profiles for \overline{u}) and where W evolves in time according to the unique, 1-d, first-order, well-mixed model for Gaussian inhomogeneous turbulence, ie.

$$dW = a \, dt + b \, d\xi \,. \tag{3}$$

Here dW is the increment in particle velocity over timestep dt (computed as indicated below), and $d\xi$ is a Gaussian random variate with $\overline{d\xi} = 0$, $(\overline{d\xi})^2 = dt$. The conditional mean acceleration and the coefficient b of the random forcing are:

$$a = -\frac{C_0 \epsilon(z)}{2\sigma_w^2(z)} W + \frac{1}{2} \frac{\partial \sigma_w^2}{\partial z} \left(\frac{W^2}{\sigma_w^2} + 1\right) ,$$

$$b = \sqrt{C_0 \epsilon(z)} , \qquad (4)$$

where ϵ is the TKE dissipation rate and C_0 a universal coefficient introduced by Kolmogorov (detals are given in the eas572 booklet). The product $C_0\epsilon$ should be specified according to:

$$\frac{2 \sigma_w^2}{C_0 \epsilon} = \frac{0.5 z}{\sigma_w} \left(1 - 6\frac{z}{L}\right)^{\frac{1}{4}}, \ L < 0 ,$$

$$\frac{2 \sigma_w^2}{C_0 \epsilon} = \frac{0.5 z}{\sigma_w} \left(1 + 5\frac{z}{L}\right)^{-1}, \ L > 0 .$$
(5)

These equations, in conjunction with formulae for σ_w

$$\sigma_w = 1.25 \ u_* \ , \ L \ge 0 \ ,$$

= 1.25 $u_* \ (1 - 3z/L)^{1/3} \ , L < 0 \ ,$ (6)

permit to infer $\sqrt{C_0 \epsilon}$. The timestep should be set as a fixed proportion of the timescale, ie. $dt = \mu T_L(z)$ where $\mu \sim 0.1$. The initial vertical velocity should be a random Gaussian number with zero mean and standard deviation σ_w .

Note: An earlier version of this assignment asked you to "Examine several values of the universal constant, viz. $C_0 = (1, 3.5, 10)$." This was a mistake on my part, and makes sense only if ϵ is independently prescribed. For example, one could simulate a neutral run $(|L| = \infty)$, setting $\epsilon = u_*^3/(k_v z)$ and $\sigma_w = 1.3u_*$. Then one would need to specify C_0 . In fact, eqns. (5) in conjunction with eqns. (6) *imply* a choice for C_0 (of about 3.5).

Confining particles (surface reflection

Trajectories should be "reflected" about a surface $z_r \ge z_0$ (in practise it is probably acceptable to set $z_r \sim 10z_0$); each time a particle moves below z_r it should be "bounced" back to the same distance *above* z_r , and the sign of the vertical velocity that carried it below z_r must be reversed, viz.

```
if(Z.lt.zr) then
Z=zr+(zr-Z)
W=-W
endif
```

How is mean concentration derived from computed trajectories?

Imagine a mast or vertical axis standing at distance x = 100 m downwind from the source. Divide the vertical axis into layers of depth Δz , which will define the vertical resolution of your computed concentration profile. Label your layers with index J.

Each time a particle passes x = 100 m, increase the count N(J) in the layer it occupies. When you have computed all N_P independent trajectories, the ratio $N(J)/N_P$ is clearly the probability that a single particle released at the source crosses x = 100 m in layer J. Therefore $N(J)/N_P$ is related to the mean horizontal flux $F_x(J)$ of particles in that layer, in fact

$$\frac{N(J)}{N_P} = \frac{F_x(J)\ \Delta z}{Q} \tag{7}$$

where Q is the real world (physical) source strength. And since we have no horizontal fluctuations u' in our treatment, we have $F_x(J) \equiv C(J) U(J)$ (the streamwise convective flux density is entirely due to the mean velocity), and so by rearrangement

$$\frac{C(J)}{Q} = \frac{N(J)}{N_P \,\Delta z \, U(J)} \,. \tag{8}$$

Don't make your bins too thin (Δz too small) or there will be a very small probability of any trajectory passing through your bins... with the result that unless you release an immense number (N_P) of trajectories, you will have a statistically unreliable (noisy, albeit high resolution) concentration profile. Probably $\Delta z \sim 0.1$ m is satisfactory.

Table 1: Normalized cross-wind integrated concentration $u_*\chi/Q$ [m⁻¹] observed at distance x = 100 m from the source (height $h_s = 0.46$ m) in several Project Prairie Grass runs.

$z [\mathrm{m}]$	$\mathrm{Run}\;57$	$\mathrm{Run}\; 33$	$\mathrm{Run}\ 50$	$\operatorname{Run}59$
17.5	1.1E-4	1.3E-4	2.3E-4	0
13.5	4.5E-4	4.8E-4	$7.1\mathrm{E}\text{-}4$	0
10.5	1.08E-3	1.17E-3	1.72E-3	0
7.5	2.42E-3	2.80E-3	3.41E-3	0.07E-3
4.5	0.55E-2	0.58E-2	0.61E-2	0.21E-2
2.5	0.86E-2	0.92E-2	0.85E-2	1.05E-2
1.5	1.06E-2	1.08E-2	0.96E-2	1.75E-2
1.0	1.12E-2	1.16E-2	1.00E-2	2.14E-2
0.5	1.17E-2	1.22E-2	1.07E-2	2.40E-2

References

Barad, M.L. 1958. Project Prairie Grass, a Field Program in Diffusion (Vol. 2). Tech. rept. Geophysical Research Papers No. 59, TR-58-235(II). Air Force Cambridge Research Center.

Table 2: Micro-meteorological parameters for the above Project Prairie Grass runs.

	$\operatorname{Run}57$	Run 33	Run 50	Run 59
$u_* [{\rm ms^{-1}}]$	0.5	0.55	0.44	0.14
L [m]	-239	-93	-26	7
z_0 [m]	0.0058	0.0075	0.0033	0.005

Haugen, D.A. 1959. Project Prairie Grass, a Field Program in Diffusion (Vol.

3). Tech. rept. Geophysical Research Papers No. 59, TR-58-235(III). Air Force Cambridge Research Center.