
EAS 572 Assignment 3 (25%) 2010

Lagrangian Simulation of Project Prairie Grass

In the Project Prairie Grass tracer gas dispersion trials (Barad, 1958; Haugen,

1959), sulphur dioxide was released continuously from a nozzle at height z =

hs = 0.46 m over a flat prairie, and the resulting 10-min mean concentrations

of gas were observed on downstream arcs at radii x = (50, 100, 200, 400, 800)

m. Here we will focus on the concentrations observed at x = 100 m, where

six 20 m towers sampled mean concentration at multiple heights, providing

sufficient information to provide the profile of crosswind-integrated mean

concentration

χ(100, z) =

π
∫

θ=−π

c(x, θ, z) r dθ . (1)

Earlier analyses have shown that absorption of SO2 by the dry prairie grass

can be considered negligible; we shall consider the wind statistics to be

given by Monin-Obukhov Similarity Theory (MOST); and that the underly-

ing probability density function ga(w) for the Eulerian vertical velocity is a

Gaussian, with zero mean and known standard deviation σw.

Let [X(t), Z(t)] represent the coordinates of a fluid element, and [U, W ]

its velocity on the radial (i.e. downstream, x) and vertical axes. We shall

perform two-dimensional simulations of these experiments, making the ap-

proximations that (i) radial motion occurs at the local mean cup wind speed;

and (ii) the Lagrangian vertical velocity can be simulated using the (unique)
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one-dimensional, first-order Lagrangian stochastic (LS) trajectory model for

Gaussian inhomogeneous turbulence.

By computing trajectories in the x, z plane, compute the vertical profiles

of crosswind-integrated concentration at x = 100 m for each of the Project

Prairie Grass dispersion experiments documented in Tables (1, 2). Compare

(and comment on) the simulated and measured concentration profiles.

Further details of the LS model

Assume particle position (X, Z) evolves in time with velocity (U, W ) where

U = u(Z(t)) (2)

(adopt appropriate MOST profiles for u) and where W evolves in time ac-

cording to the unique, 1-d, first-order, well-mixed model for Gaussian inho-

mogeneous turbulence, ie.

dW = a dt + b dξ . (3)

Here dW is the increment in particle velocity over timestep dt (computed as

indicated below), and dξ is a Gaussian random variate with dξ = 0, (dξ)2 =

dt. The conditional mean acceleration and the coefficient b of the random

forcing are:

a = − C0 ǫ(z)

2σw
2(z)

W +
1

2

∂σw
2

∂z

(

W 2

σw
2

+ 1

)

,

b =
√

C0 ǫ(z) , (4)
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where ǫ is the TKE dissipation rate and C0 a universal coefficient introduced

by Kolmogorov (detals are given in the eas572 booklet). The product C0ǫ

should be specified according to:

2 σw
2

C0 ǫ
=

0.5 z

σw

(

1 − 6
z

L

)
1

4

, L < 0 ,

2 σw
2

C0 ǫ
=

0.5 z

σw

(

1 + 5
z

L

)

−1

, L > 0 . (5)

These equations, in conjunction with formulae for σw

σw = 1.25 u∗ , L ≥ 0 ,

= 1.25 u∗ (1 − 3z/L)1/3 , L < 0 , (6)

permit to infer
√

C0 ǫ. The timestep should be set as a fixed proportion of

the timescale, ie. dt = µ TL(z) where µ ∼ 0.1. The initial vertical velocity

should be a random Gaussian number with zero mean and standard deviation

σw.

Note: An earlier version of this assignment asked you to “Examine several

values of the universal constant, viz. C0 = (1, 3.5, 10).” This was a mistake

on my part, and makes sense only if ǫ is independently prescribed. For

example, one could simulate a neutral run (|L| = ∞), setting ǫ = u3

∗
/(kvz)

and σw = 1.3u∗. Then one would need to specify C0. In fact, eqns. (5) in

conjunction with eqns. (6) imply a choice for C0 (of about 3.5).

Confining particles (surface reflection

Trajectories should be “reflected” about a surface zr ≥ z0 (in practise it is

probably acceptable to set zr ∼ 10z0); each time a particle moves below zr
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it should be “bounced” back to the same distance above zr, and the sign of

the vertical velocity that carried it below zr must be reversed, viz.

if(Z.lt.zr) then

Z=zr+(zr-Z)

W=-W

endif

How is mean concentration derived from computed tra-

jectories?

Imagine a mast or vertical axis standing at distance x = 100 m downwind

from the source. Divide the vertical axis into layers of depth ∆z, which will

define the vertical resolution of your computed concentration profile. Label

your layers with index J .

Each time a particle passes x = 100 m, increase the count N(J) in the

layer it occupies. When you have computed all NP independent trajectories,

the ratio N(J)/NP is clearly the probability that a single particle released

at the source crosses x = 100 m in layer J . Therefore N(J)/NP is related to

the mean horizontal flux Fx(J) of particles in that layer, in fact

N(J)

NP
=

Fx(J) ∆z

Q
(7)

where Q is the real world (physical) source strength. And since we have no

horizontal fluctuations u′ in our treatment, we have Fx(J) ≡ C(J) U(J)

(the streamwise convective flux density is entirely due to the mean velocity),
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and so by rearrangement

C(J)

Q
=

N(J)

NP ∆z U(J)
. (8)

Don’t make your bins too thin (∆z too small) or there will be a very small

probability of any trajectory passing through your bins... with the result that

unless you release an immense number (NP ) of trajectories, you will have a

statistically unreliable (noisy, albeit high resolution) concentration profile.

Probably ∆z ∼ 0.1 m is satisfactory.

Table 1: Normalized cross-wind integrated concentration u∗χ/Q [m−1] ob-
served at distance x = 100 m from the source (height hs = 0.46 m) in several
Project Prairie Grass runs.

z [m] Run 57 Run 33 Run 50 Run 59
17.5 1.1E-4 1.3E-4 2.3E-4 0
13.5 4.5E-4 4.8E-4 7.1E-4 0
10.5 1.08E-3 1.17E-3 1.72E-3 0
7.5 2.42E-3 2.80E-3 3.41E-3 0.07E-3
4.5 0.55E-2 0.58E-2 0.61E-2 0.21E-2
2.5 0.86E-2 0.92E-2 0.85E-2 1.05E-2
1.5 1.06E-2 1.08E-2 0.96E-2 1.75E-2
1.0 1.12E-2 1.16E-2 1.00E-2 2.14E-2
0.5 1.17E-2 1.22E-2 1.07E-2 2.40E-2

References

Barad, M.L. 1958. Project Prairie Grass, a Field Program in Diffusion (Vol.

2). Tech. rept. Geophysical Research Papers No. 59, TR-58-235(II). Air

Force Cambridge Research Center.

5



Table 2: Micro-meteorological parameters for the above Project Prairie Grass
runs.

Run 57 Run 33 Run 50 Run 59
u∗ [m s−1] 0.5 0.55 0.44 0.14
L [m] -239 -93 -26 7
z0 [m] 0.0058 0.0075 0.0033 0.005

Haugen, D.A. 1959. Project Prairie Grass, a Field Program in Diffusion (Vol.

3). Tech. rept. Geophysical Research Papers No. 59, TR-58-235(III). Air

Force Cambridge Research Center.
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