## Lagrangian Simulation of Project Prairie Grass

In the Project Prairie Grass tracer gas dispersion trials (Barad, 1958; Haugen, 1959), sulphur dioxide was released continuously from a nozzle at height $z=$ $h_{s}=0.46 \mathrm{~m}$ over a flat prairie, and the resulting 10-min mean concentrations of gas were observed on downstream arcs at radii $x=(50,100,200,400,800)$ m . Here we will focus on the concentrations observed at $x=100 \mathrm{~m}$, where six 20 m towers sampled mean concentration at multiple heights, providing sufficient information to provide the vertical profile of crosswind-integrated mean concentration

$$
\begin{equation*}
\chi(100, z)=\int_{\theta=-\pi}^{\pi} \bar{c}(x, \theta, z) r d \theta \tag{1}
\end{equation*}
$$

Earlier analyses suggest that absorption of $\mathrm{SO}_{2}$ by the dry prairie grass can be considered negligible. We shall assume the wind statistics to be consistent with Monin-Obukhov Similarity Theory (MOST), and that the underlying probability density function $g_{a}(w)$ for the Eulerian vertical velocity is a Gaussian, with zero mean and a known standard deviation $\sigma_{w}$.

Let $\mathbf{X}(t) \equiv(X, Z)$ represent the coordinates of a fluid element, and $\mathbf{U} \equiv$ $(U, W)$ its velocity on the radial (i.e. downstream, $x$ ) and vertical axes. We shall perform two-dimensional simulations of these experiments, making the approximations that (i) radial motion occurs at the local mean cup wind speed; and (ii) the Lagrangian vertical velocity can be simulated using the
(unique) one-dimensional, first-order Lagrangian stochastic (LS) trajectory model for Gaussian inhomogeneous turbulence.

By computing trajectories in the $x, z$ plane, compute the vertical profiles of crosswind-integrated concentration at $x=100 \mathrm{~m}$ for each of the Project Prairie Grass dispersion experiments documented in Tables (1, 2). Compare (and comment on) the simulated and measured concentration profiles.

## Further details of the LS model

Assume particle position $(X, Z)$ evolves in time with velocity $(U, W)$ where

$$
\begin{equation*}
U=\bar{u}(Z(t)) \tag{2}
\end{equation*}
$$

(adopt appropriate MOST profiles for $\bar{u}$ ) and where $W$ evolves in time according to the unique, 1-d, first-order, well-mixed model for Gaussian inhomogeneous turbulence, ie.

$$
\begin{equation*}
d W=a d t+b d \xi \tag{3}
\end{equation*}
$$

Here $d W$ is the increment in particle velocity over timestep $d t$ (computed as indicated below), and $d \xi$ is a Gaussian random variate with $\overline{d \xi}=0, \overline{(d \xi)^{2}}=$ $d t$. The conditional mean acceleration and the coefficient $b$ of the random forcing are:

$$
\begin{align*}
a & =-\frac{C_{0} \epsilon(z)}{2 \sigma_{w}^{2}(z)} W+\frac{1}{2} \frac{\partial \sigma_{w}^{2}}{\partial z}\left(\frac{W^{2}}{\sigma_{w}^{2}}+1\right) \\
b & =\sqrt{C_{0} \epsilon(z)} \tag{4}
\end{align*}
$$

where $\epsilon$ is the TKE dissipation rate and $C_{0}$ a universal coefficient introduced by Kolmogorov (details are given in the eas572 booklet).

The TKE dissipation rate $\epsilon$ should be specified according to:

$$
\begin{equation*}
\frac{k_{v} z}{u_{*}^{3}} \epsilon \equiv \phi_{\epsilon}\left(\frac{z}{L}\right)=\phi_{m}\left(\frac{z}{L}\right)-\frac{z}{L} \tag{5}
\end{equation*}
$$

where $\phi_{m}$ is the MOST function for the mean velocity shear, to be specified as

$$
\phi_{m}= \begin{cases}(1-28 z / L)^{-1 / 4} & , L \leq 0  \tag{6}\\ 1+5 z / L & , L>0\end{cases}
$$

The velocity standard deviation can be parameterized

$$
\sigma_{w}= \begin{cases}1.25 u_{*}(1-3 z / L)^{1 / 3} & , L \leq 0  \tag{7}\\ 1.25 u_{*} & , L>0\end{cases}
$$

The timestep should be set as a fixed proportion of the timescale

$$
\begin{equation*}
T_{L}=\frac{2 \sigma_{w}{ }^{2}(z)}{C_{0} \epsilon(z)}, \tag{8}
\end{equation*}
$$

ie. $d t=\mu T_{L}(z)$ where $\mu \ll 1$. The initial vertical velocity should be a random Gaussian number with zero mean and standard deviation $\sigma_{w}$. Please perform a total of 7 simulations:

- Simulate Run 57 repeatedly, comparing outcomes for three values of the universal constant $C_{0}$, viz. $C_{0}=(1,3.1,10)$ with the parameter $\mu=0.1$ (showing the impact of choice of $C_{0}$
- Run a fourth simulation of Run 57 with $C_{0}=3.1, \mu=0.02$ (showing the impact of the choice of time step, if any)
- Simulate each of Runs $(33,50,59)$ with $C_{0}=3.1, \mu=0.1$

Each simulation should use a large enough ensemble (particle count $N_{P}$ ) to give statistically reliable outcome. Before embarking on your "final" simulations, you should experiment with increasing the particle count. A fourfold increase in $N_{P}$ will halve the statistical uncertainty (irregularity) in your computed concentration profiles.

## Confining particles (surface reflection

Trajectories should be "reflected" about a surface $z_{r} \geq z_{0}$ (in practise it is probably acceptable to set $z_{r} \sim 10 z_{0}$ ); each time a particle moves below $z_{r}$ it should be "bounced" back to the same distance above $z_{r}$, and the sign of the vertical velocity that carried it below $z_{r}$ must be reversed, viz.

```
if(Z.lt.zr) then
    Z=zr+(zr-Z)
    W=-W
endif
```


## How is mean concentration derived from computed trajectories?

Imagine a mast or vertical axis standing at distance $x=100 \mathrm{~m}$ downwind from the source. Divide the vertical axis into layers of depth $\Delta z$, which will define the vertical resolution of your computed concentration profile. Label your layers with index $J$.

Each time a particle passes $x=100 \mathrm{~m}$, increase the count $N(J)$ in the
layer it occupies. When you have computed all $N_{P}$ independent trajectories, the ratio $N(J) / N_{P}$ is clearly the probability that a single particle released at the source crosses $x=100 \mathrm{~m}$ in layer $J$. Therefore $N(J) / N_{P}$ is related to the mean horizontal flux $F_{x}(J)$ of particles in that layer, in fact

$$
\begin{equation*}
\frac{N(J)}{N_{P}}=\frac{F_{x}(J) \Delta z}{Q} \tag{9}
\end{equation*}
$$

where $Q$ is the real world (physical) source strength. And since we have no horizontal fluctuations $u^{\prime}$ in our treatment, we have $F_{x}(J) \equiv C(J) U(J)$ (the streamwise convective flux density is entirely due to the mean velocity), and so by rearrangement

$$
\begin{equation*}
\frac{C(J)}{Q}=\frac{N(J)}{N_{P} \Delta z U(J)} \tag{10}
\end{equation*}
$$

Don't make your bins too thin ( $\Delta z$ too small) or there will be a very small probability of any trajectory passing through your bins... with the result that unless you release an immense number $\left(N_{P}\right)$ of trajectories, you will have a statistically unreliable (noisy, albeit high resolution) concentration profile. Probably $\Delta z \sim 0.1 \mathrm{~m}$ is satisfactory.

## References

Barad, M.L. 1958. Project Prairie Grass, a Field Program in Diffusion (Vol. 2). Tech. rept. Geophysical Research Papers No. 59, TR-58-235(II). Air Force Cambridge Research Center.

Haugen, D.A. 1959. Project Prairie Grass, a Field Program in Diffusion (Vol.

Table 1: Normalized cross-wind integrated concentration $u_{*} \chi / Q\left[\mathrm{~m}^{-1}\right]$ observed at distance $x=100 \mathrm{~m}$ from the source (height $h_{s}=0.46 \mathrm{~m}$ ) in several Project Prairie Grass runs.

| $z[\mathrm{~m}]$ | Run 57 | Run 33 | Run 50 | Run 59 |
| :--- | :--- | :--- | :--- | :--- |
| 17.5 | $1.1 \mathrm{E}-4$ | $1.3 \mathrm{E}-4$ | $2.3 \mathrm{E}-4$ | 0 |
| 13.5 | $4.5 \mathrm{E}-4$ | $4.8 \mathrm{E}-4$ | $7.1 \mathrm{E}-4$ | 0 |
| 10.5 | $1.08 \mathrm{E}-3$ | $1.17 \mathrm{E}-3$ | $1.72 \mathrm{E}-3$ | 0 |
| 7.5 | $2.42 \mathrm{E}-3$ | $2.80 \mathrm{E}-3$ | $3.41 \mathrm{E}-3$ | $0.07 \mathrm{E}-3$ |
| 4.5 | $0.55 \mathrm{E}-2$ | $0.58 \mathrm{E}-2$ | $0.61 \mathrm{E}-2$ | $0.21 \mathrm{E}-2$ |
| 2.5 | $0.86 \mathrm{E}-2$ | $0.92 \mathrm{E}-2$ | $0.85 \mathrm{E}-2$ | $1.05 \mathrm{E}-2$ |
| 1.5 | $1.06 \mathrm{E}-2$ | $1.08 \mathrm{E}-2$ | $0.96 \mathrm{E}-2$ | $1.75 \mathrm{E}-2$ |
| 1.0 | $1.12 \mathrm{E}-2$ | $1.16 \mathrm{E}-2$ | $1.00 \mathrm{E}-2$ | $2.14 \mathrm{E}-2$ |
| 0.5 | $1.17 \mathrm{E}-2$ | $1.22 \mathrm{E}-2$ | $1.07 \mathrm{E}-2$ | $2.40 \mathrm{E}-2$ |

Table 2: Micro-meteorological parameters for the above Project Prairie Grass runs.

|  | Run 57 | Run 33 | Run 50 | Run 59 |
| :--- | :--- | :--- | :--- | :--- |
| $u_{*}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ | 0.5 | 0.55 | 0.44 | 0.14 |
| $L[\mathrm{~m}]$ | -239 | -93 | -26 | 7 |
| $z_{0}[\mathrm{~m}]$ | 0.0058 | 0.0075 | 0.0033 | 0.005 |

3). Tech. rept. Geophysical Research Papers No. 59, TR-58-235(III). Air Force Cambridge Research Center.

