

"bLS" method to infer emission rate Q from measured concentration C

$$\frac{U\left(C-C_b\right)}{Q} = n$$

We may use a dispersion model to estimate the dimensionless number *n*, i.e. to determine the "*C-Q*" relationship...

Then, measuring *C* fixes *Q*

"bLS" method to infer emission rate Q from measured concentration C

- calculate trajectories upwind from point where C is measured
- efficient & simple to find Q from area source
- needed information lies in ensemble of touchdown locations and associated touchdown velocities w_0

$$n = \frac{1}{N_P} \sum \frac{2 U}{\mid w_0 \mid}$$

Compute N_P paths. Sum over all touchdowns within source boundary.

thus
$$Q^{bLS} = \frac{C - C_b}{\frac{1}{N_P} \sum \frac{2}{|w_0|}}$$

Verification in ideal setting: profiles on the infinite flat plain well known (Monin-Obukhov similarity theory -- lines on graphs)

reilectors

Concentration measured with open-path lasers, which give line-average concentration along path Atmospheric measurements: - cup windspeed (U) profile - temperature (T) profile - turbulence $(\sigma_u, \sigma_v, \sigma_w)$ providing bLS parameters: - U, wind dir, z_0 , L

-eleven laser paths

- *z_{laser}* = 0.85 to 1.0 m
- fetch from 0 to 90 m
- different conditions:
 - *S (z=2m)* from 0.4 to 6.7 m/s
 - *L* from -0.2 (*unstable*) to +0.1 m (s*table*)
 - day & night
- 108 observations of Q & C (15 minute averages)

Brian Crenna's "WindTrax" for MO-bLS

Performance of MO-bLS in ideal conditions

Reject periods when MOST does not a fit profiles:

 Q_{bLS}/Q averaged 1.02 (n = 77 obs. periods)

And
$$\sigma_{Q/Q} = 0.2$$

bLS integrates changing winds with skill to yield accurate Q_{bLS}

Texas Feedlot: 47,000 cattle

Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique

T.K. Flesch^{a,*}, J.D. Wilson^a, L.A. Harper^b, R.W. Todd^c, N.A. Cole^c

Agricultural and Forest Meteorology 144 (2007) 139-155

(DOY) for 2004 and 2005. Calculations are made using the in-feedlot

Utah Swine farms - ammonia

"we calculated ammonia emissions of 6.5 and 16 g animal ¹ day⁻¹ in March and July, respectively"