Project Prairie Grass (O'Neill, Nebraska)

Figure 5.7 Tower array at 100-m arc.

- dry prairie grass, $z_0 \sim 0.006$ m
- surface thought non-absorbing
- arcs of detectors \rightarrow compute XWIC $\chi=\chi(x,z)$

Haugen (1959, editor): "Project Prairie Grass, a Field Program in Diffusion (Vol.3)," Geophysical Research Papers No. 59, TR-58-235(III), Air Force Cambridge Research Center

- continuous source SO₂
- 10 min averaging times
- detectors from 50 m to 800 m
- more than 60 runs; wide range in Obukhov length *L*

Figure 5.3 Release-point for the tracer.

Empirical prescription of plume widths: the Pasquill-Gifford curves

Fig. 3.11 — Vertical diffusion, σ_z , vs. downwind distance from source for Pasquill's turbulence types.

dependence on averaging time?

Approx. analytic solution, MOST wind and diffusivity (Wilson 1982)

Fig. 9. Observed and predicted values of the dimensionless crosswind-integrated concentration at z = 150 cm and x = (50, 100, 200, 400, 800 m) for Project Prairie Grass runs occurring in stable stratifi-

FIG. 4. As in Fig. 2 except for 200 m downwind of the source.