
(Philip*, 1959, The Theory of Local Advection, J. 
Meteorol. Vol. 16)

Disturbed micrometeorological flows – example – “local advection”

Horizontal gradients of mean properties 
(                                       etc.) in the 
atmospheric surface layer may be generated

• by inhomogeneity in the surface boundary
conditions** – inhomogeneity in surface 
properties and fluxes e.g.                                     
due to varying soil moisture, surface 
elevation/cover ,…

• by purely aerodynamic disturbances 
  (windbreaks, hills, buildings,…)

• by a combination of these types of influences

Note: the flow need not be disturbed at the 
boundary in order to be inhomogeneous 

Q*
QH0 QE0

QGeas572_localadvection.odp
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Our subject material so far has 
addressed flows that are horizontally-
homogeneous. We now progress to 
consider examples of “disturbed flows,” 
with emphasis on their modelling –   
which, to the extent that it is accurate, is 
indicative of our ability to generalize from 
specific instances of disturbed flows…

**The surface energy budget

* J.R. Philip was chief of CSIRO’s “Pye 
Lab” (Canberra), and provided ingenious 
analytical solutions to the mass 
conservation equation applied to soil 
moisture and soil solute flows – solutions 
vitally useful in the pre-computer era

u , T , u ' w ' , w ' T '

ΔQH0 , ΔQE0 , Δ z0, ...



The Paradigm of the Internal Boundary Layer

Useful reading: Garratt pp104 -108 
(Sec. 4.5 up to eq. 4.30)

Weakness: this approach neglects disturbance 
to pressure and considers the  disturbance 
propogates like a passive tracer gas

Paradigm:

z

x

Horiz. unif at x<0
MOST applies – known 
inflow profiles

hb (x)

Blending region

new equilibrium layer, MOST applies

This Poisson eqn easily derivable from the Reynolds eqns. 
Solution for mean pressure at point P responds to r.h.s. over 
all positions r, weighted as |P – r |-2 . This implies a 
disturbance has upstream influence
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QJRMS Vol. 89, 1963

infinite Bowen 
ratio QH0/QE0 in 
the approach 
flow

An early 
expt. & test 
of Philip’s 
analytical 
theory of 
local 
advection –  
wind blows 
off tarmac 
onto short 
grass

Interpretive paradigm = eddy diffusion; 
steady state; divergences of sensible and 
latent heat flux vectors vanish; imposed 
(unvarying) power law profiles of wind and 
diffusivity

Absolute humidity ρv

Height

Height
[cm]

Mean temperature



Later authors** refined the treatment of the lower boundary condition; useful to reframe in 
terms of equivalent temperature and saturation deficit (ρcpTeq  is total thermodyn. energy). 

 γ the psychrometric constant – temperature if all latent heat converted to sensible

 e is vapour pressure

Outgoing 
terrestrial 
(longwave) 
radiation

Incoming 
terrestrial 
(longwave) 
radiation

LHS constrained at gnd by sfc energy 
balance

**Raupach (1991; Vegetatio, Vol. 91) preceded by McNaughton

T eq=T +
e
γ

D=esat(T )−e QH+QE= − ρR cp K
∂T eq

∂ z



Observed variation of the profile of 
the (advecting) mean wind speed 
implies one should account for 
conservation of momentum as well 
as heat and latent heat

Rider, Philip & Bradley had treated net radiation less soil heat flux as invariant with x, 
implying

QH0+ QE0 =const . = − ρR c p [K ∂T eq

∂z ]
0
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inversion
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dry plain moist field

hot
dry

cool, humid

z

xx=0

Local advection experiment (La Crau Valley, France; N.J. Bink, 1996. Ph.D. thesis, 
Wageningen Agric. Univ.)



Rao-Wyngaard-Coté 2nd-order closure model of local advection:
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hor.flx.hor.flx. vrt.flx.vrt.flx.

hor.flx.hor.flx.

shear prod.shear prod. redistrib.redistrib.

τ =
2k
ϵ

Very similar to 
other 2nd-order 
closures, e.g. 
Launder,Reece & 
Rodi

a turbulence 
time scale

effective diffusivity

(here at is a closure constant)

The closure constants are not free – they are constrained by forcing the model to reduce to an exact model of the ideal NSL

adv.adv. diff.diff.

pressure disturbance 
(not allowed for in 
original RWC 
treatment)



Computational domain and boundary-conditions for application** of Rao-Wyngaard-Cote 2nd-order 
closure model to La Crau experiment:

**

x = 0

(Q*- QG )1

(Q*- QG )2

z01

rc1 rc2 (canopy resistance for evaporation)

u*1

z= 80 m, flow undisturbed

x = -20 m x=120 m

MOST 
profiles

z02



• λ the latent heat of vapourization; εsa 
ratio of the slope of the sat’n vapour 
pressure curve to the psychrometric 
constant; Da the saturation deficit at 
the surface, varying with x

La Crau run 42 – specification of controlling 
boundary conditions

Vincent Van Gogh: “Harvest at La Crau”Vincent Van Gogh: “Harvest at La Crau”

Surface treated as a “big leaf” and coupled to 
model atmosphere’s lowest plane of gridpoints (at 
                                     ) using the Penman-
Monteith evapotranspiration eqn

“Canopy resistance” rc is the excess resistance for vapour 
loss, such that 

QE0≡λE0=
ϵsa

ϵsa+ r v /r h
[Q*−QG ]+

ρλ Da /r h

ϵsa+r v /r h



Aside on bulk transfer resistances

e.g. let rh be the transfer resistance for heat between levels z=z0 to z=h, 
defined by

We can use MOST (entailing the assumption of height-independent flux) to calibrate the 
resistance:

If the flux is height-independent it is easy to prove that

rh
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Observations at La Crau Valley (France) versus numerical solution of conservation equations 
using RWC 2nd-order closure – modification of the mean temperature profile



Inference of gas emissions (NH3, CH4) from 
agricultural lagoons… familiar techniques are 
predicated on a horizontally-uniform flow and 
existence of a constant flux layer over the source.

Generate a “synthetic” lagoon flow and test 
several micromet methods

Preparation entailed comparing RWC with the La 
Crau local advection expt. – adding a passive 
scalar and comparing with Project Prairie Grass –  
and adding a windbreak momentum sink to test 
model’s treatment of windbreak flow (covered in 
detail elsewhere). The RWC model performed 
very well in all tests

                                                      

U2, T2, C2

U1, T1, C1

U

An application of the RWC local advection model…



Mean wind reduction behind a long 
porous fence (h /z0 =600, kr =2) 
mounted perpendicular to neutrally-
stratified flow… Mulhearn & Bradley 
field observations versus solution of 
(augmented) RWC conservation 
equations:

Tracer concentration field from a ground level area 
source at x>0, in horizontally-uniform and neutral 
flow… lines from RWC, symbols from the well-
mixed Lagrangian stochastic model for this flow 
(known to agree with Prairie Grass):

x=0

gas plume
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Proved model is competent to generate disturbed field of wind, temperature, 
humidity, tracer gas (and their fluxes)…  now generate synthetic lagoon flow…

0-20 100x [m]

z =80 m

T02 (const)

LMO,1

=fixed

T01 (const)

Δx=1m, Δz=0.2m

unstable, neutral or stable approach flow

unstable, neutral or stable IBL

z01 = z02 = 0.01 m
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Stable approach flow encounters a 
warm lagoon, Tlag=Tup+ 5  (case F)

Q?
z 

[m
]

distance over lagoon [m]



Q?

Performance of flux-estimators…

L a g o o n
U p w i n d D o w n w i n d

( x = 5 0  m )

F l u x - G r a d i e n t  I H F B L S

z 0

( m )
T up

( C )
L
( m )

z 0

( m )
T lag

( C )
L
( m )

z 1= 0 . 1 5
z 2 =  0 . 4

z 1= 0 . 4
z 2 =  0 . 6 5

z 1= 0 . 4
z 2 =  1 . 4

u p d o w n

A 0 . 0 1 2 5 - 2 3 0 . 0 0 1 2 5 - 1 2 0 . 9 1 0 . 7 8 0 . 7 2 1 . 0 9 0 . 8 2 0 . 8 9

B 0 . 0 1 2 5 - 2 3 0 . 0 0 1 3 0 - 7 0 . 9 4 0 . 8 3 0 . 7 9 1 . 0 8 0 . 8 2 0 . 8 7

C 0 . 0 1 2 5 - 2 3 0 . 0 0 1 2 0 - 2 7 0 . 8 5 0 . 7 1 0 . 6 3 1 . 1 0 0 . 8 2 0 . 8 9

D 0 . 0 1 2 5 - 2 3 0 . 0 0 1 1 5 1 0 3 0 . 8 2 0 . 6 2 0 . 5 2 1 . 0 9 0 . 8 2 0 . 8 8

E 0 . 0 1 2 5 4 8 0 . 0 0 1 2 5 2 3 0 . 6 1 0 . 4 3 0 . 3 6 1 . 0 3 0 . 8 0 0 . 8 6

F 0 . 0 1 2 5 4 8 0 . 0 0 1 3 0 - 2 2 0 . 6 9 0 . 5 6 0 . 5 3 1 . 0 3 0 . 8 0 0 . 8 9

G 0 . 0 1 2 5 4 8 0 . 0 0 1 2 0 6 0 . 5 1 0 . 2 9 0 . 1 9 1 . 0 3 0 . 8 0 0 . 8 7

H 0 . 0 1 2 5 4 8 0 . 0 0 1 1 5 2 0 . 4 3 0 . 1 8 0 . 0 9 1 . 0 3 0 . 8 0 1 . 1 5

I 0 . 0 1 2 0 - 2 3 0 0 0 . 0 0 1 3 0 - 6 0 . 9 2 0 . 8 6 0 . 8 5 1 . 0 5 0 . 8 8 0 . 9 4

J 0 . 0 1 2 0 - 2 3 0 0 0 . 0 0 1 1 0 5 0 . 6 1 0 . 3 7 0 . 2 3 1 . 0 6 0 . 8 8 0 . 8 7



Conclusions…

Q?

RWC local advection model does plausible job of calculating disturbed microclimate, as 
judged by its comparison with

• observed development of (T,Q) in flow from dry to moist land

• tracer dispersion (indirectly verified against Prairie Grass)

• reduction in mean wind speed behind a fence

When flux estimators are applied to synthetic “data” at x = 50m over the lagoon, Integrated 
Horizontal Flux method (i.e. mass balance) excellent, 10% or better (model-independent, but 
practicality depends on geometric simplicity); backwards LS (model-based, source-receptor 
method) also very good (20%) despite neglect of flow disturbance; flux-gradient method 
(which assumes existence of a constant flux layer that does not prevail in distrubed flow 
except in the growing equilib. layer) very poor in some cases

Broader conclusion relative to eas572 – this 
and other examples will illustrate the prevalent 
way of thinking relative to flow disturbances; 
and show we have some skill in the 
mathematical representation of disturbed 
micromet flows. The basic limitation is the 
closure problem (RANS models far from 
perfect); as yet LES impractical for routine 
application to disturbed flows



Disturbed micrometeorological flows
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