
EAS572, “The Atmospheric Boundary Layer” Mid-term Exam 19 Oct., 2010

Professor: J.D. Wilson Time available: 80 mins Value: 15%

Note: Indices j = (1, 2, 3) are to be interpreted as denoting respectively the (x, y, z) components,
e.g. ~u ≡ uj ≡ (u1, u2, u3) ≡ (u, v, w). In equations or symbols the summation convention applies
for repeated alphabetic subscripts (e.g. ujuj). Symbols pR, ρR, TR, θR represent pressure, density,
temperature and potential temperature of the reference state.

Multichoice (10 x 1
2
% = 5%)

1. In Reynolds’ equation

∂u1

∂t
+ uj

∂ u1

∂xj

= −
1

ρR

∂p

∂x1

−
∂ u′

j u′

1

∂xj

+ ν ∇2u1 (1)

for the mean streamwise velocity (here symbolized u1 and running along the x1-axis), “tur-
bulent friction” is identifiable as the term

(a) ν ∇2u1

(b) uj ∂ u1/∂xj

(c) −∂ u′

j u′

1
/∂xj XX

(d) ∂u1/∂t

2. Again referring to Eqn. (1), the quantity uj ∂ u1/∂xj expands as

(a) u1 ∂ u1/∂xj δ1j

(b) u1 ∂ u1/∂x1 + u2 ∂ u1/∂x2 + u3 ∂ u1/∂x3 XX

(c) u1 ∂ u1/∂x1 + u2 ∂ u2/∂x2 + u3 ∂ u3/∂x3

(d) u1 ∂ uj/∂xj

3. Assuming the velocity field uj is non-divergent. Which of the following expressions for the
term uj ∂φ/∂xj (where φ is an arbitrary scalar) is not correct?

(a) u ∂φ/∂x + v ∂φ/∂y + w ∂φ/∂z

(b) ∂ uφ/∂x + ∂ vφ/∂y + ∂ wφ/∂z

(c) ~u ∇ · φ XX

(d) ~u · ∇φ

(e) ∇ · (~u φ)
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4. Suppose signals p, q have zero mean (i.e. p = q = 0) whereas the mean of a third signal r is
arbitrary (may be non-zero). Reynolds averaging the product p q r gives for p q r the value:

(a) p′q′r′

(b) p′q′ r

(c) p′q′ r + p′q′r′ XX

(d) 0

(e) r

5. Under the Boussinesq approximation the gravitational acceleration (−g) in the vertical mo-
mentum equation

dw

dt
= −

1

ρ

∂ p

∂z
+ ... − g

(here showing only relevant terms) is replaced by a “reduced gravity” term, +gT̃/TR. Here T̃
is the temperature deviation from a hydrostatic and adiabatic reference state (i.e. a reference
state whose pressure pR(z) obeys the hydrostatic law, whose potential temperature is constant
and equal to θR, and whose true temperature TR varies with height at the adiabatic lapse rate),
such that total temperature T = TR + T̃ and total pressure p = pR + p̃.

Along with the modified gravity term, the vertical pressure gradient force −ρ−1 ∂p/∂z is
replaced with

(a) −ρ−1

R ∂p/∂z

(b) −ρ−1 ∂p̃/∂z

(c) −ρ−1

R ∂p̃/∂z XX

(d) − ∇ · (pR/ρR)

(e) 0

6. One important consequence of the Boussinesq approximation is that the velocity field ~u ≡ uj

satisfies

(a) ∇ · ~u = 1

(b) ∇ · ~u = 0 XX

(c) ∇× ~u = 0

(d) uj ∂ui/∂xj = g δi3

(e) ~u = (u, 0, 0) where u = u(x, y, z, t)
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7. The power spectral density Sww(f) of the vertical velocity fluctuation is defined such that

σ2

w =

∞
∫

ln f=−∞

f Sww(f) d ln f ,

where σ2

w is the variance. Let fmx label the frequency at which f Sww(f) is a maximum.
Referring specifically to height z within a neutrally stratified surface layer, the time scale
1/fmx characterizes the range of eddies, and should be (roughly) proportional to

(a) energy-containing; u∗ z−1

(b) dissipation (smallest and fastest); u∗ ln z

(c) energy-containing; z u−1

∗
XX

(d) dissipation (smallest and fastest); u∗ z−1

8. Cauchy’s equation of motion for an arbitary real fluid reads

ρ
dui

dt
= ρ Fi +

∂τij

∂xj

. (2)

Here ∂τij/∂xj represents and may be named

(a) acceleration due to body forces; the divergence of the stress tensor

(b) acceleration due to surface (contact) forces; the stress tensor

(c) acceleration due to body forces; the stress tensor

(d) acceleration due to surface (contact) forces; the divergence of the stress tensor XX

9. Comparing Eqn. (2) with Reynolds’ Eqn. (1) we note the absence of any explicit pressure
gradient term in Cauchy’s equation. Thus the diagonal elements (τ11, τ22, τ33) of his tensor τij

must be

(a) (p, p, p)

(b) (p/ρ, p/ρ, p/ρ)

(c) (−p, −p, −p) XX

(d) (u1, u2, u3)

where p is the pressure.
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10. Neglecting buoyancy and Coriolis terms, the transport equation for vorticity ωj reads

∂ωi

∂t
+ uj

∂ωi

∂xj

= ωj

∂ui

∂xj

+ ν∇2ωi .

If there were such a physical thing as “inviscid, two-dimensional flow,” both terms on the
r.h.s. would vanish. In such a flow

(a) vorticity is conserved following the motion (dωi/dt = 0) XX

(b) ∇ · ~u = 0

(c) ∂ωi/∂t = 0

(d) ~ω ≡ ∇× ~u = 0

(e) ∂ωi/∂xj = 0

4



1 Short answer (2 x 5% = 10%)

Instructions : Please answer any two of the following questions. Use diagrams wherever they may
be helpful. Be sure to state any assumptions or simplifications you make. No page limit applies.

23 Oct. 2010: Instructor’s skeleton answers/marking criteria provided at back.

1. Explain the Monin-Obukhov similarity theory (MOST) of the atmospheric surface layer. Give
the context within which one turns to a similarity theory rather than a rigorous theory based
on conservation priciples. Define the limited conditions under which MOST claims to apply.
Delineate the vertical extent of the layer where it is valid; state which quantities MOST posits
as “controlling” the flow statistics, relating the choice to the notion of the surface layer as
a “constant flux layer.” Explain the significance of the Obukhov length and the meaning of
the limit |z/L| → 0. Assuming the MO universal function φm(z/L) ≡ (kvz/u∗)∂ u/∂z for the
dimensionless mean wind shear in stable stratification is φm = 1+5z/L, deduce by integration
a formula for the mean wind profile u(z).

2. Explain the energetics of turbulence in a stationary and horizontally-homogeneous atmo-
spheric surface layer. Your discussion should make reference to the budget equations (given
as data) for the turbulent kinetic energy k, and for the variances (σ2

u, σ2

v , σ2

w) whose sum is
2k. Support your discussion by a diagrammatic representation of the energetics, and make
pertinent reference to the flux Richardson number and the Obukhov length.

3. The generalized conservation equation derived in class is

∂φ

∂t
= − ∇ · ~Fφ + Q .

Assume φ = ρR cp θ where θ is the potential temperature, i.e. φ is to be taken as the concentra-
tion of sensible heat (J m−3) with the product ρRcp (reference density × specific heat capacity)
treated as a constant. By appropriately specifying the sensible heat flux vector, then applying
Reynolds averaging, and subsequently discarding terms where justifiable, derive a conserva-
tion equation for the mean potential temperature θ(z) in the horizontally-homogeneous ABL.
Please note (and justify) all simplifications, restrictions and assumptions you make.

From an atmospheric modelling perspective, your heat equation would need boundary con-
ditions on ground and at the top of the ABL (i.e. at z = 0, δ). So called “flux boundary
conditions” specify the kinematic heat flux density w′θ′ (or equivalently ρRcp w′θ′) at those
levels. Explain how this couples your equation to the surface energy budget (given as data).

5



Data

Note: Below ρR, TR are the reference density and reference (Kelvin) temperature.

• The turbulent kinetic energy (TKE, “k”) equation, assuming steady state and horizontal
uniformity, neglecting viscous transport (ν∇2k), and assuming a uni-directional mean flow
aligned with the x-axis(u, 0, 0), is:

∂k

∂t
= 0 = −u′w′

∂u

∂z
+

g

TR

w′T ′ −
∂

∂z
w′ (p′/ρR + e′ ) − ǫ ,

where e′ ≡
(

u′2 + v′2 + w′2
)

/2 and ǫ is the TKE dissipation rate.

• The corresponding budget equation for u′2:

∂u′2

∂t
= 0 = −2 u′w′

∂u

∂z
−

∂w′u′2

∂z
+

2

ρR

p′
∂u′

∂x
− ǫuu , (3)

where it is common to adopt the assumption of local isotropy and write ǫuu ≡ ǫvv ≡ ǫww ≡
(2/3) ǫ

• The corresponding budget equation for v′2:

∂v′2

∂t
= 0 = −

∂w′v′2

∂z
+

2

ρR

p′
∂v′

∂y
− ǫvv (4)

• The corresponding budget equation for w′2:

∂w′2

∂t
= 0 = +2

g

TR

w′T ′ −
∂

∂z

(

w′3 +
2

ρR

p′w′

)

+
2

ρR

p′
∂w′

∂z
− ǫww (5)

• The flux Richardson number

Ri
f =

g

TR

w′T ′

u′w′ ∂u/∂z + v′w′ ∂v/∂z
(6)

• The Obukhov length L = − u3

∗
TR

(

kv g w′T ′

)

−1

. In unstable stratification Rf
i ≈ z/L

• The ‘surface energy balance’ on a reference plane at the base of the atmosphere is expressed
by the equation

Q∗ = QH + QE + QG

where all fluxes are in [W m−2]. Sign convention: Q∗ the net radiation, positive if directed
towards the surface; QH , QE the sensible and latent heat fluxes, positive if directed from the
surface towards the atmosphere; QG the heat flux to storage beneath the reference plane,
positive if directed from the surface into crop/forest/ground/lake/ocean.

6



Skeleton short answers/marking criteria

1. MOST

To obtain full marks, it was necessary to make each of the following points:

[0.5 ] Context: unavailability of any rigorous theory, due to the closure problem

[0.5 ] Claims to apply in horizontally-homogeneous conditions

[0.5 ] And in a layer z0 ≪ z ≪ δ or equivalently, within the surface layer (depth order δ/10) but
above the roughness sublayer

[1.0 ] posits the state of this layer controlled by kinematic fluxes of momentum and heat (u′w′,
w′T ′); a buoyancy parameter g/T0; and the coordinate z

[0.5 ] kinematic fluxes of momentum and heat considered effectively constant across the layer

[0.5 ] L explained as relating to stratification; L < 0 (L > 0) in unstable (stable) stratification,
z/L → 0 the neutral limit

[0.5 ] z/|L| < 1 defining the layer in which shear production is more important than buoyant
production of TKE

[0.5 ] integrate the wind shear to get

u(z) − u(z0) =
u∗

kv

(

ln
z

z0

+ 5
z − z0

L

)

[0.5 ] where by definition of z0, u(z0) ≡ 0

2. Turbulence energetics

Marks could be gained as indicated...

[0.5 ] The kinetic energy of the turbulence is measured by the “TKE,” defined k = (u′2 +v′2 +w′2)

[0.5 ] Necessity for an energy supply to overcome loss of turbulent kinetic energy by viscous
dissipation ǫ) to heat (internal energy)

[0.5 ] Cascade of energy – transfer across the spectrum from production scales to dissipation scales

[0.5 ] TKE produced by “shear production” (identify in given TKE eqn)

[0.5 ] TKE produced (unstable strat.) or removed (stable strat.) by “buoyant production” (identify
in given TKE eqn) depending on the sign of the heat flux

[0.5 ] TKE may also be transferred from one layer or elevation to another, by way of the transport
terms

[0.5 ] If the transport terms are negligible (as is often assumed) then “local equilibrium” prevails

[0.5 ] Fig. (1) shows the energy conversion pathways in a horizontally-uniform PBL:
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MKE

1/2 U2

            TKE

1/2 ( σu   +  σv  +  σw  )222

Grav. PE

Internal Energy
(heat)

Work by
viscous
force

stable

unstable

Work by buoyancy force
Work by large-scale pressure

Stresses due to
unresolved motion
(u’) do work on the
mean flow (U)

Shear
Production

J.D. Wilson

Figure 1: Pools of Energy and transformation pathways between them

[0.5 ] the TKE as measured by k does not distinguish between energy in the u′, v′ and w′ pools, but
there are budget equations for each of these separately: and in particular there appear in these
equations terms of form p′ ∂u′

α/∂xα (no summation) that are known as “redistribution terms”
and which when summed across all three equations sum to zero (thus, no redistribution term
in the TKE eqn). These terms shuffle TKE from component to component, and are considered
to act to try to equalize the distribution of TKE across the three component pools

[0.5 ] this notion is captured by Fig. (2).

u ’ 2

v ’ 2

w’ 2

Shear Prod. Bouyant Prod.

Redistribution by

small scale p forces

J.D. Wilson

Figure 2: TKE sources and sinks, and redistribution of TKE amongst the variance pools

[0.5 ] the flux Richardson number Rf
i (given as data) is the ratio of buoyant to shear production,

so that |Rf
i | = 1 signifies equality of contributions

[0.5 ] furthermore Rf
i ≡ 1

φm

z
L

where φm → 1 as Rf
i → 0. Therefore in moderate stability the height

z = |L| is the height where buoyant and shear production have roughly equal magnitude

[0.5 ] viscous dissipation drains energy from each of the three pools
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3. Heat budget

[0.5 ] assume no sources are present (Q = 0)

[1.0 ] specify the sensible heat flux vector as ~u θ− κ∇θ, and drop the molecular conduction term,
thus

∂θ

∂t
= −

∂

∂xj

(uj θ )

[1.0 ] Reynolds average, noting averaging commutes with differentiation

∂θ

∂t
= −

∂

∂xj

uj θ

[1.0 ] discard terms in ∂/∂x, ∂/∂y (horizontal homogeneity)... Note: logically important to average

before applying the simplification that flow from assuming horizontal homogeneity

∂θ

∂t
= −

∂

∂z

(

w θ + w′θ′
)

[1.0 ] discard term in w which vanishes as a consequence of the combined circumstances that the
velocity field is incompressible and the flow is horizontally homogeneous

∂θ

∂t
= −

∂ w′θ′

∂z

[0.5 ] to within the constant factor ρRcp, the surface value of w′θ′ is the sensible heat flux which
is constrained by the surface energy budget
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