
The plant canopy layer and roughness sublayer 

“the surface layer over a rough boundary must be considered in two parts: an inertial
sublayer in which height above the effective surface provides the only length scale in 
adiabatic conditions, and in which semi-logarithmic profile laws, and their diabatic 
extensions, are obeyed; and a sublayer adjoining the surface itself, in which the flow 
depends explicitly on surface-defined length scales, via the intrusion into the mean flow 
field of wake or convective motions generated by individual roughness elements. We call 
this region the roughness sublayer” (Raupach et al., 1980, BLM Vol. 18)

Let’s consider the micro-meteorology of a plant canopy layer**.  Let the canopy be 
characterized by its mean height h (or H), its “leaf area density”  a = a(z) [m2 m-3]  whose 
height integral is the “Leaf Area Index” or LAI (leaf area per unit ground area), and a 
drag coefficient cd (z)

** optional reading:
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• need small, fast sensors capable 
of response to winds over entire 
solid angle (turbulence intensity 
σu / U is large)

• here showing servo-driven, split-
film heat transfer anemometers, 
running at 20 Hz (Elora, Ontario)

• latest instrument is a 3-D sonic 
with 10 cm pathlength, suitable 
within tall forests

We’ll start with a tour of observed 
characteristics of wind in a canopy 
layer…
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data acquisition system 
had 16K of memory; 
storage on punched 
paper tape



Mean windspeed: • profile is concave down; well fitted by exponential decay

• curvature changes sign near z = h… inflexion point 
instability

• CSIRO (Aust.) group (Finnigan, Raupach, Harman...)  take 
coherent structures view and explain obsvd. charact.

Elora corn
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mixing layer paradigm – velocity 
step at z=h
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Strong shear at z=h                   -- production of TKE 



Shear stress profile:• under a dense canopy one expects there is no mean stress 
on ground – then τh  (= u*h

2 ) equals height integral of drag

• above canopy, height gradient of stress balances pressure 
gradient + Coriolis force (or in wind tunnel, pressure alone)

• stress gradient aloft here attributed to disparity of 
instrument types (uppermost instrument u-v-w propellors; all 
others sonics) and terrain effects

Elora corn
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Quadrant analysis 
shows that the mean 
shear stress is 
dominated by 
“sweeps” (gusts), 
which transfer a large 
stress fraction in a 
short time fraction
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Mean streamwise momentum balance within the canopy – and the wind profile
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Parameterize vegetation by its leaf area 
density a(z) [m2 m-3] and effective drag 
coefficient

The canopy leaf area index (LAI) is 
height integral of a(z),
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If one adopts eddy viscosity closure with a constant K (typically 
chosen as K = c h u*h ), and treats cda  as a constant then:

β (the “extinction coefft”) is a function of (K, cd a ) but normally 
treated as a free coefficient
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(discretization of the d.e.)



Formal treatment of the horizontal inhomogeneity of a canopy flow

The canopy space is “multiply connected” (vegetation is external to the flow domain). Following NR Wilson & RH 
Shaw (1977), one introduces spatially-continuous flow variables that are averages in the horizontal plane over 
distances that are large w.r.t. canopy inhomogenbeity length scales, and so can be regarded as being 
independent of x,y.

g (x , y , z , t ) = 〈g 〉 + g ' ' + g '

local time-average 
deviation from the 
space-time mean

space-time 
mean (horiz. 
avg. of time 
avg.)

instantaneous local 
fluctuation from the 
local time average

instantaneous 
local value = + +

R ij
tot = 〈u i u j 〉 = U i U j + 〈u i ' ' u j ' ' 〉 + 〈u i ' u j ' 〉

Then cross products expand as follows:

where U i ≡〈u i 〉 dispersive momentum flux –  
arises from spatial 
covariance of local time 
average departures from the 
local space-time mean flow.

Dispersive fluxes have rarely 
been measured – Raupach et 
al. in wind tunnel canopy flow. 
Andreas Christen (UBC Geog.) 
is actively working on this 
(forest & urban winds) – e.g. 
Christen et al. (2009; 
Boundary-Layer Meteorol., 
131:193-222)



Std dev of vertical velocity• normalization renders profiles from corn canopy and from 
pine forest quite similar

• in base of canopy σw only about 1/5th of its value above 
canopy

• unless trajectories computed using a well-mixed LS 
model*, particles accumulate in base of canopy (analog to 
molecular diffusion where small velocity scale reflects low 
temperature and – accordingly – high density)

• the budget equation for σw
2 contains a turbulent transport 

term                         , which measurements show is large 
near and in the plant canopy – the TKE budget in a canopy 
is not in local equilibrium

Elora corn &
Urriara pine

z/h

*The unique well-mixed , 1D LS model for 
vertically-inhomogeneous Gaussian turbulence is 
(Thomson, 1987):
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Intermittency:

Here we see a “sweep” (also known as a “gust”)

Time sequence of temperature (top) and humidity 
(below) during the “flushing” of the Urriara pine canopy 
by a gust of cooler, drier air from above. Long after the 
gust, local redistribution of the heat shed from the sunlit 
foliage, and of transpired vapour, have re-established 
the pre-gust situation of a (relatively) warm, moist, 
quiescent canopy airstream somewhat decoupled from 
the boundary-layer overhead. From Denmead and 
Bradley (1985)

O.T. Denmead and E.F. Bradley, 1985, Flux-
gradient relationships in a forest canopy, 421- 
442 in The forest-atmosphere interaction, eds. 
Hutchison &  Hicks, D. Reidel Pub. Co.
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Schematic “temperature ramp” – 
during quiescent periods temperature 
slowly increases, then suddenly drops 
to a cooler baseline value as a gust 
penetrates the canopy...



Structure of the “sweeps” (“gusts”)

COLD

WARM

temperature “ramps”

are terminated by sweeps



Structure of the “sweeps” (“gusts”)



Quadrant analysis of the shear stress

u’

w’

Sweep/gust
(dominant
quadrant)

Outward interactionEjection

Inward 
interaction

Hole 
region

One computes the stress fraction from each quadrant and associated 
time fraction

∣u ' w '∣ < H u ' w '

(u ' w ' )α=
1
N ∑

i=1

N

Iα(u i ' ,w i ' ) u i ' w i 'Stress contribution from quadrant α

Stress fraction from quadrant α

Fα =
(u ' w ' )α

u ' w '

I1 = 1 if u ' >0 ,w '>0 ,∣u ' w '∣≥H ∣u ' w '∣

Indicator function for quadrant 1 with hole 
size H



Quadrant analysis 
applied to the eddy 
fluxes of water vapour 
and carbon dioxide 
above a wheat crop 
(St. Albert, 16 Aug. 
2011)

/clang/quadrant/veusz



Length scales

Elora corn

h

Squares:

where                                          is the Eulerian

integral time scale



More scatter than in the stress profile – why? 
Heat flux density
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Assuming stationarity & horiz homogeneity the layer 
heat budget is:
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QH,leaf is the mean rate at which a leaf at z+∆z/2 is 
shedding heat to the airstream; a function of its energy 
balance – the radiation load, vapour pressure deficit, 
stomatal conductance… If we introduce the Bowen ratio 
βbr  as ratio of the leaf sensible heat flux to leaf latent 
heat flux, then the differential equation for the heat 
budget is

Note that this involves the divergence of the net radiative 
energy flux density Q*(z), which in turn will surely depend 
on such factors as solar elevation (shortwave) and the 
canopy temperature profiles (longwave)… this explains 
the non-universality of the heat flux profile. 
A version of the Penman-Monteith equation provides the 
Bowen ratio 
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Probability density functions for velocity:

• clearly these are not Gaussian 
distributions

• deep in the canopy the most probable 
velocity is a weak downdraft 

       w ' / σw



Non-local TKE balance:

D (= ε ) viscous conversion to heat

rate of working by the canopy 
drag force

rate of shear production

turbulent 
transport**

**The transport term in the σw
2 budget is                                    and would vanish if the vertical velocity skewness 

                      
vanished – which it does not. 



Flux- gradient relationship:

The distinct crown of the canopy and the underlying ground are separated by a very open trunk 
space. The crown and the ground are strong sinks/sources, whereas the trunk space absorbs little 
radiation so produces little sensible or latent heat, and no carbon dioxide.

Counter-gradient fluxes in this forest are a consequence of the widely separated sources and sinks 
in presence of very large eddies (length scale h).

Corrsin (Adv. Geophys. 1974, 
Vol. 18A): K-theory valid when 
the transport process is “fine 
grained” relative to the length 
scale of the tracer distribution

Lagrangian model correctly 
handles the problem

Simplified analytical 
Lagrangian treatment provided 
by Raupach (“Localized Near 
Field” theory) and a variant by 
Warland and Thurtell From: O.T. Denmead and E.F. Bradley, 1985, Flux-gradient 

relationships in a forest canopy, 421- 442 in The forest-atmosphere 
interaction, eds. Hutchison &  Hicks, D. Reidel Pub. Co.



Fig. 14. Formation of dual-hairpin eddy. (a) The initial 
instability is a Kelvin–Helmholtz wave of wavelength λ, 
which develops on the inflected mean-velocity profile at 
the canopy top. (b) The resulting velocity field is 
nonlinearly unstable, and successive regions of 
alternating spanwise vorticity clump into coherent ‘Stuart’ 
vortices, which retain the wavelength, λ. (c) Two 
successive Stuart vortices are moved closer together at 
some spanwise location yp by the ambient turbulence.

The mutual induction of their vorticity fields 
causes them to approach more closely and 
rotate around each other. Vortex pairing 
doubles the wavelength of the disturbance to 
2λ. Note that this disturbance of the streamwise 
symmetry of the induced velocity fields of 
successive vortices will propagate upwind and 
downwind at the same y location. (d) As the 
initial hairpins are strained by the mean shear, 
most of the vorticity accumulates in the legs, 
and self-induction by the vortex legs dominates 
the motion of the hairpins. As a result, the head-
down hairpin moves down, while the head-up 
hairpin moves up....

The characteristic eddy consists of an upstream head-down sweep-
generating hairpin vortex superimposed on a downstream head-up 
ejection-generating hairpin. The conjunction of the sweep and ejection 
produces the pressure maximum between the hairpins, and this is also 
the location of a coherent scalar microfront

Not examinable
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