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» an earlier class covered the unigue one-
dimensional well-mixed LS model for
Gaussian inhomogeneous turbulence (used
In assig. 3)

 today a quick look at a well-mixed two-
dimensional LS model for horizontally-
homogeneous Gaussian turbulence

 then a look at the corresponding three-
dimensional LS model for fully-

Inhomogeneous Gaussian turbulence
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Eulerian approach:
“Mass iIs conserved...”
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Z(t+dt) = Z(t) + W dt
W(t + dt) = W(t) + dW
dW = a(X,U) dt+b d&
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Thomson’s well-mixed LS model for 2-D Gaussian, vertically-inhomogeneous turbulence
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A TWO-DIMENSIONAL TRAJECTORY-SIMULATION
MODEL FOR NON-GAUSSIAN, INHOMOGENEOUS
TURBULENCE WITHIN PLANT CANOPIES

T. K. FLESCH and J. [ WILSON
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» tested the Thomson 2-D LS N _ ,
model (of previous page) and . ' ?
an alternative based on non- S \
Gaussian velocity PDF (an LS
added hypothesis of the e
alternative model is that a, I
must be anti-parallel to the ol . L
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* proved acceptable to
aproximate the canopy Wind tunnel canopy — experiment by Legg, Raupach & Coppin
velocity PDF as Gaussian — crosswind line source of tracer heat
* inhomogeneity has greater Ow U

influence than non-

Gaussianity '




Salient property of wind in a city: short term (order one hour) wind statistics
In a city are extremely inhomogeneous on all three axes

CRTI-02-0093RD: Advanced. Emetgency Response
System for CBRN Hazard:Frediction and Assessment for
the Urban EAviremment
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Specify meteorology (3-dimensional field of wind
statistics).

Is this is the primary source of error?

Define city (building
positions and

shapes)

Specify source(s)
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Compute trajectories using
3-d steady-state Lagrangian
stochastic model
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() Forward problem: infer concentration at detectors
(i) Backward problem: infer source parameters




Using a Lagrangian stochastic model to compute the concentration field
due to a gas source in urban winds

High resolution weather analysis/prediction: “Urban GEM-LAM”

@ Provides upwind and upper boundary conditions

Building-resolving k- turbulence model: “urbanSTREAM” (steady state, no
thermodynamic equation, control volumes congruent with walls)

Provides computational mesh over flow domain
and these gridded fields:

u, , U

U, ou'uyt o, e

Lagrangian stochastic model “urbanLS” to compute ensemble of paths
from source(s)




Thomson’s 3D well-mixed LS trajectory model

e assumes probability density function for velocity is Gaussian
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i 1€ = coefficients (T ’'s) determining paths

dU — a dt+\/C Edt r (r is a standardized Gaussian random
i 0

variate: mean is zero, variance isl)
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The T ’'s are computed and stored on the grid prior to computing the
ensemble of paths. At each timestep, use T ’s from gridpoint closest to
particle (ie. no interpolation to particle position). Note that the cond’tl mean
accel'n in Thomson’s model comprises a constant term, a term linear in the
velocity fluctuation, and a term quadratic in the velocity fluctuation



Thomson LS trajectory model to compute paths in urban flow — modifications:

» when particle moves out of cell (1,J,K), check for encounter with building wall:
perform perfect reflection off walls

* prohibit particle velocities that differ from the local mean by more than
(arbitrarily) 6 standard deviations

i

I*I Service Météorologigue du Canada \‘J-/'
Meteoroloaical Service or Canada
6! 002
(EERed %A Tmilet 2003




Joint Urban 2003 — tracer expt. in Oklahoma City

wind

Run IOP9r2: source on 0600-
0630 LST; observations are

avg. 0615-0630

54 55
X X X X

517
3000

516 X
X

96
X

86
X

76
X

66
X

56

X

600

800 1000
x [m]

1200

: 2800
| 2600
: 2400
: 2200

— 2000

y [m]



Forward paths computed for IOP9r2

B urbanls3 - [Paths in x-y plane...
] File Edit ‘iew State ‘Window Help

» k-epsilon model (F.-S. Lien & E. Yee)
provides hi-res flow

o gridlength ~10x 10 x 3 m

» resolve buildings, neglect stratification

o trajectories by well-mixed 3D LS model




Animations courtesy CMC (esp. Nils Ek & Jean-Philippe Gauthier)
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Mean ground-level concentration [parts per trillion] from forward LS
simulation
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Comparing LS model with observed concentration

[

factor of two:
e forwards 9/16
e backwards 8/16

Fraction of predictions within

* ignoring flow disturbance 2/16
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Conclusion

» CRTI urban dispersion project hinges on wind modelling from the global
down to street scale

* prototype modelling system runs at CMC - more realistic than, say, re-tuning
Gaussian puff/plume model
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later look at another e e
application of B e ty s { G
Thomson’s 3D LS
model, used to infer
strength Q of a gas
source enclosed by a
windbreak (i.e.
emitting into a very
disturbed surface
layer) from the
measured downwind
concentration




