
EAS572, “The Atmospheric Boundary Layer” Final Exam 14 Dec., 2007

Professor: J.D. Wilson Time available: 150 mins Value: 35%

Note : Relevant equations, definitions and data are given at the back of the exam.

Multichoice (22 x 1
2% = 11%)

1. A flow with ‘high turbulence intensity’ would be characterized by:

(a) k ¿ 1

(b) k/u ¿ 1

(c) k À σ2
u + σ2

v + σ2
w

(d) σu/u & 1

(e) σu/u ¿ 1

2. The sum of the sensible and latent heat flux densities at the surface, QH0 + QE0, can
be regarded as the surface source strength [W m−2] for which scalar property?

(a) mean temperature, T

(b) mean potential temperature, θ

(c) mean dewpoint temperature, Td

(d) mean equivalent temperature, T eq ≡ T + e/γ

(e) mean saturation deficit at the surface, e(z0)− eS(T (z0))

3. Let hb(x) be the depth of an internal boundary-layer (IBL) growing from the leading
edge (at x = 0) of a step change in surface Bowen ratio, and let subscript ‘∞’ denote
properties of the flow far upstream from the discontinuity. The simplest paradigm for
the growth rate of the IBL assumes ∂hb/∂x is proportional to:

(a) 1/u∞(z0∞)

(b) 1/u∞(α hb), where α is a constant

(c) σw∞/u∞(α hb)

(d) z0∞

(e) k∞
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4. In a neutrally-stratified and horizontally-homogeneous ASL (“hhNSL”), the aerody-
namic resistance ra between two levels z1 and z2 > z1 is

(a) ra = (z2 − z1) u−1
∗

(b) ra =
z2∫
z1

(kv u∗ z)−1 dz

(c) ra = u∗ (z2 − z1)
−1

(d) ra = ln(z1/z2)

(e) ra = u−1
∗

5. The property k ε−1 serves in many turbulence closure models as a/an

(a) eddy diffusivity

(b) eddy flux

(c) eddy flux divergence

(d) turbulence timescale

(e) Richardson number

6. In the (parameterized) budget equation for u′2, a term in ( u′2− 2k/3 ) models
and tends to the turbulence

(a) turbulent transport; isotropize

(b) buoyant production; stratify

(c) shear production; energize

(d) pressure-strain correlation (“redistribution term”); dissipate

(e) pressure-strain correlation (“redistribution term”); isotropize

7. Random variable x is uniformly distributed on −1 ≤ x ≤ 1. Its variance x′2 is

(a) 1/5

(b) 1/4

(c) 1/3

(d) 1/2

(e) 2/3
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8. In an adiabatic, incompressible turbulent flow, e.g. neutrally-stratified surface layer
flow about a windbreak, the mean pressure field is determined by a Poisson equation

1

ρ0

∇2p = − ∂ui

∂xj

∂uj

∂xi

− ∂u′i
∂xj

∂u′j
∂xi

This is an “elliptic” partial differential equation (i.e. highest-order spatial derivative
of the dependent variable is the curvature, and features on all spatial axes), implying

(a) an obstacle can perturb the upwind pressure field

(b) the pressure field is not affected by obstacles introduced into the flow

(c) the pressure field is determined fully by the velocity statistics

(d) eddy viscosity closure is legitimate

(e) eddy viscosity closure is not legitimate

9. In ‘advection form’ and without approximation, the continuity equation reads

(a) ∂ρ
∂t

+ ~u · ∇ρ = 0

(b) ∂ρ
∂t

= − ∇ · ( ρ ~u )

(c) dρ
dt

= 0

(d) ∂ρ
∂t

+ ~u · ∇ρ = − ρ ∇ · ~u
(e) ∇ · ~u = 0

10. In a Cartesian coordinate system the gradient (‘grad’) operator is ∇ ≡ î ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z

.

Representations of the Laplacian operator ∇2 valid in Cartesian axes include

(a) î ∂2

∂x2 + ĵ ∂2

∂y2 + k̂ ∂2

∂z2

(b) ∂2

∂xi ∂xj

(c) ∂
∂xj

∂
∂xi

(d) ∇ · ∇ ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

(e) ∂
∂xj

(
∂

∂xi
+ ∂

∂xj

)

11. In high Reynolds number turbulence, the mechanism for passing kinetic energy from
larger to smaller scales of motion is

(a) viscous dissipation

(b) shear reduction

(c) vortex stretching

(d) turbulent transport

(e) diffusion
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12. One of the conditions for validity of the Boussinesq approximation is that L ¿ c2/g,
where c is the speed of sound and g the acceleration due to gravity. Here L represents

(a) the Obukhov length

(b) the Kolmogorov length

(c) a characteristic scale for the horizontal extent of the motion field

(d) a characteristic scale for the vertical extent of the motion field

(e) the molecular mean free path

13. Under the Boussinesq approximation and neglecting certain small Coriolis terms, the
vertical momentum equation is

∂w

∂t
+ ~u · ∇w = − 1

ρR

∂ p̃

∂z
+ g

T̃

TR

+ ν∇2w

Here p̃, T̃ represent

(a) total pressure and Kelvin temperature

(b) mean (Reynolds-averaged) total pressure and Kelvin temperature

(c) instantaneous fluctuation in total pressure and Kelvin temperature

(d) instantaneous deviations of pressure and temperature from hydrostatic, adiabatic
reference state

(e) pressure and temperature of the hydrostatic, adiabatic reference state

14. ‘Inflection point instability’ refers to the existence of a level (say, zp) across which the
curvature of the wind profile changes sign. The ASL wind profile has this characteristic

(a) near the top of a plant canopy

(b) at the top of the roughness sublayer layer

(c) within the mixed layer

(d) in neutral stratification

(e) in unstable stratification

15. The flux and gradient Richardson numbers can be related to z/L as Rf
i = z

L
1

φm(z/L)

and Rg
i = z

L
φh(z/L)
φ2

m(z/L)
. In neutral stratification the Richardson number evaluates to

(a) infinity

(b) minus infinity

(c) zero

(d) unity

(e) minus unity
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16. Consider a uniform, managed forest of height hc having a pruned (branchless, leafless)
trunk space that spans 0 ≤ z ≤ h. The source distribution for water vapour is
multi-modal due to soil evaporation at z = 0, non-transpiring trunk space, and leaf
transpiration in the tree crown. Typically the sources are vertically separated by a
distance of order d (displacement length), and the occurrence of a counter-gradient
flux at the base of the crown reflects a regime where

(a) turbulence length scale ` ¿ d: observation point is in the far field of sources

(b) turbulence length scale ` ¿ d: observation point is in the near field of sources

(c) turbulence length scale ` ∼ d: observation point is in the far field of sources

(d) turbulence length scale ` ∼ d: observation point is in the near field of sources

(e) the eddy diffusion paradigm is useful

17. The vertical profile of the kinematic shear stress u′w′ within a plant canopy, when
normalized by its canopy-top value −u2

∗ ≡ u′w′(hc), is relatively invariant during days
of appreciable wind, whereas under the same conditions profiles of normalized heat
flux density w′T ′(z)/w′T ′(hc) vary markedly throughout the day. This is because

(a) Monin-Obukhov similarity theory applies for momentum but not heat transport

(b) the canopy is a “constant flux layer” for momentum, but not for heat

(c) the canopy is a “constant flux layer” for heat, but not momentum

(d) the source distribution for heat depends on solar elevation, leaf water status and
other varying factors

(e) in a plant canopy, the probability density function for vertical velocity is non-
Gaussian

18. The advection-diffusion equation

∂ c

∂t
+ U

∂ c

∂x
= Kx

∂2 c

∂x2
+ Ky

∂2 c

∂y2
+ Kz

∂2 c

∂z2

(U = const.) governs the ensemble-averaged growth rate of a puff of material released at
the origin at t = 0, for which scenario the initial condition is c(x, 0) = q δ(x−0) δ(t−0).
It is a characteristic of “diffusion” that the standard deviation of the puff size (σx,
taking as example the spread along the x-direction) behaves as

(a) σx ∝ (Kxt)
2

(b) σx ∝ Kxt

(c) σx ∝
√

Kxt

(d) σx ∝
√

t/Kx

(e) σx ∝ K
1/2
x t1/3
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19. The Gaussian plume model that finds frequent application in air pollution studies is
founded on the steady-state form of the above equation. It treats the σy, σz (plume
widths) as

(a) empirical functions of downstream distance and atmospheric stability

(b) properties prescribed by the theory, i.e., those values (which will depend on
Ky, Kz, x/U) which arise from solving the equation to obtain a multi-dimensional
Gaussian distribution

(c) to be evaluated by a modern Lagrangian stochastic model

(d) dependent on distance from the source, but not atmospheric stability

(e) dependent on atmospheric stability, but not distance from the source

20. In G.I. Taylor’s expression

dσ2
z

dt
= 2 σw

2

ξ=t∫

0

R(ξ) dξ

for the rate of growth of a puff in homogeneous turbulence, the function R(ξ) is

(a) the velocity structure function (ξ a separation in space)

(b) the Lagrangian velocity autocorrelation function (ξ the lag time)

(c) the Eulerian velocity autocorrelation function

(d) the Lagrangian velocity spectrum (ξ the frequency)

(e) the Eulerian velocity spectrum (ξ the wavenumber)

21. The equation

0 = −u′w′ ∂u

∂z
+

g

T0

w′T ′ − ∂

∂z
w′ (p′/ρ0 + e′ ) − ε

expresses conservation of , assuming

(a) mean vertical momentum (ρ0w ); neutral stratification

(b) k = (σ2
u + σ2

v + σ2
w)/2; horiz. homogeneity and stationarity

(c) k = (σ2
u + σ2

v + σ2
w)/2; neutral stratification, horiz. homogeneity and stationarity

(d) TKE dissipation rate ε; horiz. homogeneity and stationarity

(e) u′w′; neutral stratification and horiz. homogeneity

22. With respect to the above equation, if the flow is in “local equilibrium” then

(a) 0 = u′w′ ∂u/∂z = g
T0

w′T ′

(b) ε = −u′w′ ∂u/∂z + g
T0

w′T ′

(c) ε = 0 = −u′w′ ∂u/∂z

(d) ε = − w′ (p′/ρ0 + e′ )

(e) ε = − ∂
∂z

w′ (p′/ρ0 + e′ )
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Short answer (4 x 6% = 24%)

Instructions : Please answer any four of the following seven questions. Organization of

your answers is important to ensure clarity. Use diagrams wherever they may be helpful

and especially if they demonstrate your interpretation of the situations/questions as posed

here verbally. Be sure to state any assumptions or simplification you make. No page limit

applies.

A. Explain the conceptual basis, content, utility and limitations of the Monin-Obukhov

similarity theory.

B. The TKE dissipation rate

ε ≈ 15 ν

(
∂u′

∂x

)2

and commonly ε is evaluated by means of differentiating a time series of streamwise

velocity u′(t), on the assumption that

∂u′

∂x
≈ − 1

u

∂u′

∂t
(1)

where u is the only non-zero component of the mean wind. Explain why eq.(1) is

known as the “frozen turbulence hypothesis” and, making reference to (σu, σv, σw, u),

outline under what condition(s) the approximation may be valid

C. Suppose the mean wind direction, aligned with and defining the x-axis, is normal

to an infinitely long, narrow, rectangular concrete channel (depth d, width X). At

the bottom of the channel a liquid is evaporating at a uniform but unknown rate

Q [kg m−2 s
−1

]. Upwind from the channel, where the surface roughness length is z0,

the ASL is undisturbed and characterized by friction velocity u∗ and Obukhov length

L. Except at the base of the channel, the source strength for this particular gas is zero

(well-mixed background).

Now suppose you have a laser gas detector which you have set up to measure the line

average gas concentration 〈c〉 along a line normal to the channel (i.e. parallel to the

x-axis) and tangent to the ground surface (i.e. the beam runs along z/z0 ∼ 1), and that

(furthermore) you average this signal for (say) 30 minutes to obtain the time average

〈c〉. You would like to be able to infer Q from 〈c〉 and other relevant variables.

Perform a dimensional analysis suggesting (as specifically as you are able) the

form of the relationship between 〈c〉 and Q.
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D. Let u be the component of the mean wind oriented along the x-axis, and assume an

ASL that is in every respect invariant along the perpendicular (y) coordinate. It is

easy to show that if the wind profile is

u =
u∗
kv

ln

(
z

z0

)
(2)

then
h∫

z0

u(z) dz =
u∗
kv

[h (ln(h/z0)− 1) + z0]

Evaluate the difference between the heat flux density w T (h) measured at height h = 2

m and the surface heat flux w T (z0), under the approximation that the wind profile

is horizontally-invariant and given by eq.(2), but given that there is a constant and

height-independent streamwise temperature gradient

∂T

∂x
= const. = − 0.001 [K m−1]

Assume the friction velocity u∗ = 0.4 m s−1 (so that u∗/kv = 1) and that z0 = 0.01 m.

Base your calculation on a simplified1 heat conservation equation

0 = −∂u T

∂x
− ∂w T

∂z
,

whose height integral

w T (h)− w T (z0) = −
∫ h

z0

∂ u T

∂x
dz

further simplifies (under the stated conditions) to

w T (h)− w T (z0) = − ∂ T

∂x

∫ h

z0

u(z) dz

1Simplifications: steady state; symmetry along y; streamwise eddy heat flux neglected; no volumetric
heat production/destruction (i.e. no phase changes, no radiative divergence).
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E. Calibrate the power law mean wind profile

u(z) = Ur

(
z

zr

)m

to the semi-logarithmic profile for the neutral surface layer

u(z) =
u∗
kv

ln

(
z

z0

)

by evaluating Ur, m in terms of u∗, kv, z0. The availability of two parameters allows

one to impose two conditions: please evaluate Ur,m so that that both wind speed and

wind shear are correctly reproduced, at the (arbitrary) reference height zr.

F. Explain the aerodynamics of windbreak flow, taking the idealized case of an infinitely

long, porous barrier (height h) set perpendicular to the mean wind in a neutrally-

stratified surface-layer. Explain what mechanisms determine the characteristic shape

of the relative windspeed curve. Note: with reference to the u-momentum equation

given as data, here the source term S = − kr u | u | δ(x − 0) s(z − h) where ‘s’ is

a step function. As a first approximation, you may neglect vertical advection by the

mean flow, and the streamwise gradient in u′2.

G. A common assumption for the mean streamwise momentum equation within a horizontally-

uniform plant canopy (height hc) is

0 =
∂τ

∂z
− cd aU2

where U(z) = 〈u〉 is a suitably-defined mean velocity (time average of a spatial aver-

age), τ = − 〈u′w′〉 is (minus) the kinematic momentum flux, cd is a drag coefficient,

and a [m2 m
−3

] is leaf area density. Assuming cda to be independent of height, and

adopting an eddy viscosity closure

τ = K
∂U

∂z

K = `2 ∂U

∂z

(where ` = const. is the mixing length, treated as height independent), derive the

exponential canopy wind profile

U(z) = U(hc) exp

[
β

(
z

hc

− 1

) ]

and express the extinction coefficient β in terms of other named variables. Deduce also

the profile of the momentum flux τ(z).
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Symbols, Definitions, Data, Equations

Symbols: reference density and reference (Kelvin) temperature (ρ0, T0) (alternatively des-

ignated ρR, TR); roughness length z0; boundary-layer depth δ; friction velocity u∗; turbulent

kinetic energy k; variance of (e.g.) vertical velocity σ2
w ≡ w′2; TKE dissipation rate ε; kine-

matic viscosity of air ν; von Karman constant kv; pressure p; vapour pressure e; saturation

vapour pressure (at temperature T ) eS(T ); psychometric constant γ (for a parcel at tempera-

ture T with vapour pressure e, the ratio e/γ equals the hypothetical increase in temperature

due to release of latent heat, assuming all the water vapour was to be isobarically condensed).

• Assuming steady state, and homogeneity along the y direction, the Reynolds equation

for mean streamwise momentum is

u
∂u

∂x
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
− ∂u′2

∂x
− ∂u′w′

∂z
+ S

where the source term S parameterizes interaction with obstacles and is typically

treated as S ∝ − u | u |

• The ‘surface energy balance’ on a reference plane at the base of the atmosphere is

expressed by the equation

Q∗ = QH + QE + QG

where all fluxes are in [W m−2]. Sign convention: Q∗ the net radiation, positive if

directed towards the surface; QH , QE the sensible and latent heat fluxes, positive if

directed from the surface towards the atmosphere; QG the ‘soil’ heat flux, positive if

directed from the surface into ground/lake/ocean.
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