Note: Relevant equations (including the TKE equation) and data are given at the back of the exam. For all questions, please assume a local Cartesian coordinate system oriented such that x coincides with the mean wind direction (assumed height-independent) in the atmospheric surface layer (ASL), and z with the local vertical. Indices $(1,2,3)$ are to be interpreted as denoting respectively the (x, y, z) components, e.g. $\vec{u} \equiv u_{i} \equiv\left(u_{1}, u_{2}, u_{3}\right) \equiv$ (u, v, w), and the summation convention applies for repeated alphabetic subscripts (e.g. $u_{j} u_{j}$). Symbols z_{0}, δ denote the surface roughness length and the ABL depth.

Multichoice ($10 \times \frac{1}{2} \%=5 \%$)

1. Setting $i=j=1$, the term $\partial u_{i} / \partial x_{j}$ evaluates to \qquad
(a) 0
(b) 1
(c) $\partial u / \partial x$
(d) $\nabla \cdot \vec{u}$
(e) 3
2. The term $u_{j} \frac{\partial \phi}{\partial x_{j}}$ (where ϕ is an arbitrary scalar) expands to or may be alternately written as \qquad Assuming non-divergence of the velocity field, it may also be written \qquad
(a) $u \frac{\partial \phi}{\partial x}+v \frac{\partial \phi}{\partial y}+w \frac{\partial \phi}{\partial z} ; \quad \frac{\partial u \phi}{\partial x}+\frac{\partial v \phi}{\partial y}+\frac{\partial w \phi}{\partial z}$
(b) $\vec{u} \cdot \nabla \phi ; \quad u \frac{\partial u \phi}{\partial x}+v \frac{\partial v \phi}{\partial y}+w \frac{\partial w \phi}{\partial z}$
(c) $\vec{u} \nabla \cdot \phi ; \quad \frac{\partial u \phi}{\partial x}+\frac{\partial v \phi}{\partial y}+\frac{\partial w \phi}{\partial z}$
(d) $\vec{u} \cdot \nabla \phi ; \quad 0$
(e) $\vec{u} \nabla \cdot \phi ; \quad \nabla \cdot(\vec{u} \phi)$
3. If a neutrally-stratified wall shear layer is horizontally-homogeneous and in local equilibrium, the rates of shear production $\left[P_{s}=-\overline{u^{\prime} w^{\prime}} \partial \bar{u} / \partial z\right]$ and viscous dissipation $[\epsilon=\epsilon(z)]$ of turbulent kinetic energy balance. In such a layer:
(a) $\epsilon=$ const.
(b) $\overline{u^{\prime} w^{\prime}}=0$
(c) $P_{s}=\epsilon=0$
(d) $k_{v} z \epsilon(z) / u_{*}^{3}=0$
(e) $k_{v} z \epsilon(z) / u_{*}^{3}=1$
4. A "quadrant analysis" sorts the instantaneous values of (u^{\prime}, w^{\prime}) into four bins according to the four possible sign combinations,

$$
Q_{\alpha}= \begin{cases}Q_{1}, & \left(u^{\prime}>0, w^{\prime}>0\right): \text { outward interaction } \\ Q_{2}, & \left(u^{\prime}<0, w^{\prime}>0\right): \text { ejection } \\ Q_{3}, & \left(u^{\prime}<0, w^{\prime}<0\right): \text { inward interaction } \\ Q_{4}, & \left(u^{\prime}>0, w^{\prime}<0\right): \text { sweep, gust }\end{cases}
$$

In a turbulent boundary layer, the dominant quadrants are
(a) Q_{1}, Q_{2}
(b) Q_{1}, Q_{3}
(c) Q_{2}, Q_{3}
(d) Q_{2}, Q_{4}
(e) Q_{1}, Q_{4}
5. In the ASL the covariance $\overline{u^{\prime} w^{\prime}} \equiv-u_{*}^{2}<0$, and during daytime summer normally $\overline{w^{\prime} T^{\prime}}>0$. The statistic $\overline{u^{\prime} T^{\prime}}$ is the ___ and under the given conditions its sign is likely to be \qquad . (Hint: consider the likely signs of $u^{\prime}, w^{\prime}, T^{\prime}$ assuming appropriate qualitative profiles of $\bar{u}, \bar{T})$
(a) streamwise eddy heat flux density; positive
(b) streamwise eddy heat flux density; negative
(c) streamwise eddy heat flux density; same as that of the flux $\bar{u} \bar{T}$ carried by the mean flow
(d) TKE dissipation rate; positive
(e) rate of shear production of TKE; positive
6. Reynolds averaging the property f^{3} gives
(a) $\overline{f^{3}}={\overline{f^{\prime}}}^{3}$
(b) $\overline{f^{3}}=\bar{f}^{3}$
(c) $\overline{f^{3}}=0$
(d) $\overline{f^{3}}=\bar{f}^{3}+\overline{f^{\prime}}$
(e) $\overline{f^{3}}=\bar{f}^{3}+3 \bar{f} \overline{f^{\prime 2}}+\overline{f^{\prime 3}}$
7. Remembering the x-axis is aligned with the mean wind, the components of which are therefore $\bar{u}_{i} \equiv(\bar{u}, 0,0)$, "shear production" feeds kinetic energy directly into
(a) \bar{u}
(b) $\overline{u^{\prime} w^{\prime}}$
(c) σ_{w}^{2}
(d) σ_{u}^{2}
(e) σ_{u}^{2} and σ_{v}^{2}
8. In his 1915 paper on the potential temperature profile in the atmospheric boundary layer (ABL), G.I. Taylor developed the equation (here given in slightly revised notation)

$$
\frac{\partial \bar{\theta}}{\partial t}=\mathcal{W} \mathcal{D} \frac{\partial^{2} \bar{\theta}}{\partial z^{2}}
$$

where $\mathcal{W} \mathcal{D}$ constitutes an effective eddy thermal diffusivity (a specific definition is given by Taylor). The right hand side should best be interpreted as being \qquad
(a) the radiative flux divergence
(b) the divergence of the vertical heat flux carried by molecular conduction
(c) the divergence of the vertical convective heat flux carried by eddies
(d) latent heating/cooling associated with change of phase of water
(e) $\epsilon /\left(\rho_{0} c_{p}\right)$, where ϵ is the rate of conversion of turbulent kinetic energy to heat
9. Regarding Taylor's treatment, if (from today's perspective) we chose to describe the ABL using the 'diffusion' formulation (which remains the case with most of the present day numerical weather models), then an appropriate generalization would be
(a) identify $\mathcal{W} \mathcal{D}$ with the MOST eddy diffusivity $k_{v} u_{*} z \phi_{h}^{-1}$
(b) treat the eddy diffusivity as height dependent, replacing the right hand side with $\frac{\partial}{\partial z}\left[K(z) \frac{\partial \bar{\theta}}{\partial z}\right]$
(c) identify \mathcal{W} with the standard deviation of vertical velocity $\left(\sigma_{w}\right)$ and \mathcal{D} with boundary-layer depth (δ)
(d) identify \mathcal{W} with the mean vertical velocity (\bar{w}) and \mathcal{D} with the lengthscale \bar{w} / f (where f is the Coriolis parameter with units s^{-1})
(e) identify \mathcal{W} with the Geostrophic windspeed $\left(\left|\vec{U}_{g}\right|\right)$ and \mathcal{D} with the lengthscale $\left|\vec{U}_{g}\right| / f$
10. The Obukhov length L (defined in the Data section) may also be written \qquad
(a) $\frac{u_{*}^{3} T_{0}}{k_{v} g \theta_{*}}$
(b) $\frac{u_{*}^{3} \theta_{*}}{k_{v} g T_{0}}$
(c) $k_{v} z$
(d) $\frac{u_{*}^{2} T_{0}}{k_{v} g \theta_{*}}$
(e) $k_{v} \sqrt{\delta z_{0}}$

1 Short answer ($2 \times 5 \%=10 \%$)

Instructions: Please answer any two of the following three questions. Organization of your answers is important to ensure clarity. Use diagrams wherever they may be helpful and especially if they demonstrate your interpretation of the situations/questions as posed here verbally. Be sure to state any assumptions or simplification you make. No page limit applies.

1. Starting from the conservation equation

$$
\frac{\partial \phi}{\partial t}=-\nabla \cdot \vec{F}+Q
$$

and making the identification $\phi=\rho_{v}$ (the absolute humidity), derive a conservation equation for the mean humidity $\bar{\rho}_{v}$ in the horizontally-homogeneous ABL. Please note (and justify) all simplifications, restrictions and assumptions you make.
2. Draw schematic vertical profiles of the following dimensionless statistics within the horizontally-homogeneous atmospheric surface layer over a bare soil surface:

$$
\frac{\bar{u}}{u_{*}}, \frac{\sigma_{u}}{u_{*}}, \frac{\sigma_{w}}{u_{*}}, \frac{\overline{u^{\prime} w^{\prime}}}{u_{*}^{2}}, \frac{\overline{w^{\prime} T^{\prime}}}{\overline{u_{*} T_{*}}}, \frac{k_{v} z \epsilon}{u_{*}^{3}}
$$

Since these properties are all dimensionless, you may (if you wish) plot more than one variable on a given graph. Your height axis/axes (the "ordinate" of your graph) may be linear or logarithmic, according to your choice: and should cover the range $z_{0} \leq z /|L| \leq 2$. Your abscissa/abscissae should indicate approximate numerical values. Aim to convey the qualitative height trends.
3. The mean heat budget for an cloudless, unsaturated, horizontally-homogeneous ABL may be written

$$
\frac{\partial \bar{\theta}}{\partial t}=-\frac{\partial \overline{w^{\prime} \theta^{\prime}}}{\partial z}
$$

Assuming a well-mixed, very convective ABL (mean temperature $\bar{\theta}_{m}$), and neglecting any entrainment heat flux, compute the mean surface kinematic heat flux density over the interval if the mean temperatures at 11:00 and 13:00 Local Standard Time were respectively $\bar{\theta}_{m}=18 \mathrm{~K}$ and $\bar{\theta}_{m}=23 \mathrm{~K}$. Comment on the magnitude of this heat flux in the context of its being a term in the surface energy balance, assuming $\rho_{0} c_{p} \approx 10^{3} \mathrm{~J} \mathrm{~m}^{-3} \mathrm{~K}^{-1}$.

Data

Note: ρ_{0}, T_{0} are the reference density and reference (Kelvin) temperature. For the purposes of the exam, you may consider the quantities $\overline{w^{\prime} T^{\prime}}$ and $\overline{w^{\prime} \theta^{\prime}}$ identical (the kinematic heat flux density).

- The turbulent kinetic energy (TKE, " k ") equation, assuming steady state and horizontal uniformity, and assuming a uni-directional mean flow ($\bar{u}, 0,0$), is:

$$
\frac{\partial k}{\partial t}=0=-\overline{u^{\prime} w^{\prime}} \frac{\partial \bar{u}}{\partial z}+\frac{g}{T_{0}} \overline{w^{\prime} T^{\prime}}-\frac{\partial}{\partial z} \overline{w^{\prime}\left(p^{\prime} / \rho_{0}+e^{\prime}\right)}-\epsilon
$$

where $e^{\prime} \equiv\left(u^{\prime 2}+v^{\prime 2}+w^{\prime 2}\right) / 2$ and ϵ is the TKE dissipation rate.

- Obukhov length $L=-u_{*}^{3} T_{0}\left(k_{v} g \overline{w^{\prime} T^{\prime}}\right)^{-1}$
- The height-gradients in mean windspeed and mean potential temperature, according to the Monin-Obukhov similarity theory (MOST), are

$$
\begin{aligned}
\frac{k_{v m} z}{u_{*}} \frac{\partial \bar{u}}{\partial z} & =\phi_{m}\left(\frac{z}{L}\right) \\
\frac{k_{v h} z}{\theta_{*}} \frac{\partial \bar{\theta}}{\partial z} & =\phi_{h}\left(\frac{z}{L}\right)
\end{aligned}
$$

where the temperature scale is $\theta_{*} \equiv-\overline{w^{\prime} \theta^{\prime}} / u_{*}$. It is acceptable to assume equality of the von Karman constants $\left(k_{v m}=k_{v h}=k_{v}=0.4\right)$, and that in the neutral limit, defined by $z / L \rightarrow 0$, the universal functions evaluate as $\phi_{m}(0)=\phi_{h}(0)=1$.

- The 'surface energy balance' on a reference plane at the base of the atmosphere is expressed by the equation

$$
Q^{*}=Q_{H}+Q_{E}+Q_{G}
$$

where all fluxes are in $\left[\mathrm{W} \mathrm{m}^{-2}\right]$. Sign convention: Q^{*} the net radiation, positive if directed towards the surface; Q_{H}, Q_{E} the sensible and latent heat fluxes, positive if directed from the surface towards the atmosphere; Q_{G} the 'soil' heat flux, positive if directed from the surface into ground/lake/ocean. The Bowen ratio $\beta=Q_{H} / Q_{E}$ quantifies the partitioning of the energy surplus (or deficit) $Q^{*}-Q_{G}$ by the surface.

