
EAS572, “The Atmospheric Boundary Layer” Mid-term Exam 23 Oct., 2007

Professor: J.D. Wilson Time available: 60 mins Value: 15%

Note : Relevant equations (including the TKE equation) and data are given at the back
of the exam. For all questions, please assume a local Cartesian coordinate system oriented
such that x coincides with the mean wind direction (assumed height-independent) in the
atmospheric surface layer (ASL), and z with the local vertical. Indices (1, 2, 3) are to be
interpreted as denoting respectively the (x, y, z) components, e.g. ~u ≡ ui ≡ (u1, u2, u3) ≡
(u, v, w), and the summation convention applies for repeated alphabetic subscripts (e.g.
ujuj). Symbols z0, δ denote the surface roughness length and the ABL depth.

Multichoice (10 x 1
2% = 5%)

1. Setting i = j = 1, the term ∂ui/∂xj evaluates to

(a) 0

(b) 1

(c) ∂u/∂x XX
(d) ∇ · ~u

(e) 3

2. The term uj
∂φ
∂xj

(where φ is an arbitrary scalar) expands to or may be alternately

written as . Assuming non-divergence of the velocity field, it may also be
written

(a) u ∂φ
∂x

+ v ∂φ
∂y

+ w ∂φ
∂z

; ∂ uφ
∂x

+ ∂ vφ
∂y

+ ∂ wφ
∂z

XX

(b) ~u · ∇φ; u ∂ uφ
∂x

+ v ∂ vφ
∂y

+ w ∂ wφ
∂z

(c) ~u ∇ · φ ; ∂ uφ
∂x

+ ∂ vφ
∂y

+ ∂ wφ
∂z

(d) ~u · ∇φ; 0

(e) ~u ∇ · φ ; ∇ · (~u φ)

3. If a neutrally-stratified wall shear layer is horizontally-homogeneous and in local equi-
librium, the rates of shear production [Ps = −u′w′ ∂u/∂z] and viscous dissipation
[ε = ε(z)] of turbulent kinetic energy balance. In such a layer:

(a) ε = const.

(b) u′w′ = 0

(c) Ps = ε = 0

(d) kv z ε(z)/ u3
∗ = 0

(e) kv z ε(z)/ u3
∗ = 1 XX
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4. A “quadrant analysis” sorts the instantaneous values of (u′, w′) into four bins according
to the four possible sign combinations,

Qα =





Q1, (u′ > 0, w′ > 0) : outward interaction

Q2, (u′ < 0, w′ > 0) : ejection

Q3, (u′ < 0, w′ < 0) : inward interaction

Q4, (u′ > 0, w′ < 0) : sweep, gust

In a turbulent boundary layer, the dominant quadrants are

(a) Q1, Q2

(b) Q1, Q3

(c) Q2, Q3

(d) Q2, Q4 XX
(e) Q1, Q4

5. In the ASL the covariance u′w′ ≡ − u2
∗ < 0, and during daytime summer normally

w′T ′ > 0. The statistic u′T ′ is the and under the given conditions its sign is
likely to be . (Hint: consider the likely signs of u′, w′, T ′ assuming appropriate
qualitative profiles of u, T )

(a) streamwise eddy heat flux density; positive

(b) streamwise eddy heat flux density; negative XX
(c) streamwise eddy heat flux density; same as that of the flux u T carried by the

mean flow

(d) TKE dissipation rate; positive

(e) rate of shear production of TKE; positive

6. Reynolds averaging the property f 3 gives

(a) f 3 = f ′
3

(b) f 3 = f
3

(c) f 3 = 0

(d) f 3 = f
3
+ f ′3

(e) f 3 = f
3
+ 3 f f ′2 + f ′3 XX
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7. Remembering the x-axis is aligned with the mean wind, the components of which are
therefore ui ≡ (u, 0, 0), “shear production” feeds kinetic energy directly into

(a) u

(b) u′w′

(c) σ2
w

(d) σ2
u XX

(e) σ2
u and σ2

v

8. In his 1915 paper on the potential temperature profile in the atmospheric boundary
layer (ABL), G.I. Taylor developed the equation (here given in slightly revised notation)

∂θ

∂t
= WD ∂2 θ

∂z2

where WD constitutes an effective eddy thermal diffusivity (a specific definition is
given by Taylor). The right hand side should best be interpreted as being

(a) the radiative flux divergence

(b) the divergence of the vertical heat flux carried by molecular conduction

(c) the divergence of the vertical convective heat flux carried by eddies XX
(d) latent heating/cooling associated with change of phase of water

(e) ε/(ρ0cp), where ε is the rate of conversion of turbulent kinetic energy to heat

9. Regarding Taylor’s treatment, if (from today’s perspective) we chose to describe the
ABL using the ‘diffusion’ formulation (which remains the case with most of the present
day numerical weather models), then an appropriate generalization would be

(a) identify WD with the MOST eddy diffusivity kvu∗z φ−1
h

(b) treat the eddy diffusivity as height dependent, replacing the right hand side with
∂
∂z

[
K(z) ∂θ

∂z

]
XX

(c) identify W with the standard deviation of vertical velocity (σw) and D with
boundary-layer depth (δ)

(d) identify W with the mean vertical velocity (w) and D with the lengthscale w/f
(where f is the Coriolis parameter with units s−1)

(e) identify W with the Geostrophic windspeed (|~Ug|) and D with the lengthscale

|~Ug|/f
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10. The Obukhov length L (defined in the Data section) may also be written

(a) u3
∗ T0

kv g θ∗

(b) u3
∗ θ∗

kv g T0

(c) kvz

(d) u2
∗ T0

kv g θ∗
XX

(e) kv

√
δ z0

1 Short answer (2 x 5% = 10%)

Instructions : Please answer any two of the following three questions. Organization of
your answers is important to ensure clarity. Use diagrams wherever they may be helpful
and especially if they demonstrate your interpretation of the situations/questions as posed
here verbally. Be sure to state any assumptions or simplification you make. No page limit
applies.

1. Starting from the conservation equation

∂φ

∂t
= − ∇ · ~F + Q

and making the identification φ = ρv (the absolute humidity), derive a conservation
equation for the mean humidity ρv in the horizontally-homogeneous ABL. Please note
(and justify) all simplifications, restrictions and assumptions you make.

Skeleton response : Points could be accumulated to a total of 5 as follows:

• identify the flux ~F = ~u ρv − D∇ρv [1]

• correctly apply Reynolds averaging,

∂ uj ρv

∂xj

≡ ∂ uj ρv

∂xj

≡ ∂

∂xj

(
uj ρv + u′j ρ′v

)
[2]

• correctly carry out the tensor summation and invoke the assumption of horizontal
homogeneity1 (i.e. neglect horizontal derivatives of averages and set w = 0) to
obtain final result:

∂ ρv

∂t
= − ∂ w′ρ′v

∂z
[2]

These steps, correctly carried out without any serious lapse of notation, would gain full
marks (with no penalty if the molecular transport term and/or the source term were
retained). Any loss of marks in carrying out the derivation could be compensated by
restoration of one mark for noting one or both of these steps:

1Several students did not recognize that setting w = 0 is a legitimate step if one has assumed horizontal
homogeneity.
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• neglect molecular diffusion, with justification that except adjacent to the surface
the convective flux is overwhelmingly larger

• neglect source term, with justification that you are restricting to case where there
are no phase changes

• explicitly noting that, as a step in the derivation, one may use (any one of) the
relations

∂uj/∂xj = 0

∂uj/∂xj = 0

∂u′j/∂xj = 0

2. Draw schematic vertical profiles of the following dimensionless statistics within the
horizontally-homogeneous atmospheric surface layer over a bare soil surface:

u

u∗
,

σu

u∗
,

σw

u∗
,

u′w′

u2∗
,

w′T ′

u∗T∗
,

kvz ε

u3∗

Since these properties are all dimensionless, you may (if you wish) plot more than one
variable on a given graph. Your height axis/axes (the “ordinate” of your graph) may be
linear or logarithmic, according to your choice: and should cover the range z/|L| ≤ 2.
Your abscissa/abscissae should indicate approximate numerical values. Aim to convey
the qualitative height trends.

Skeleton response : Please see Fig.(1) at back for instructor’s sketches. In hindsight,
this was a time-consuming and difficult question; an unintended complication was the
implicit invitation (or strictly, necessity) to deal with both possibilities for the sign of
L. A common problem in the responses was the absence of a scale on the abscissa,
which absence for purposes of marking had to be taken to indicate the student did not
know the magnitude and/or range of the variable in question. Don’t overlook to mark
in numerical value at obvious special points on the axis, e.g. u/u∗ = 0 at z = z0.

Question was marked by assigning 1
2
% for every correct point, e.g. 1

2
for noting wind-

speed increases with height, another 1
2

if the shear was shown as stronger at lower
heights, another 1

2
for a correct scale marking, (etc).

• u/u∗ : Varies linearly with ln(z/|L|) for small z/|L|, irrespective of the sign of L.
Curvature of the profile for finite z/|L| depends on the sign of L through φm(z/L),
viz.

∂u

∂ ln z
=

u∗
kv

φm

( z

L

)
(1)

with stronger shear on the stable side (for which φm ≈ 1+5z/L, Lec. 8). Finding
a scale for the magnitude of u/u∗ hinges on remembering that typical near-ground
windspeeds are a few m s−1 while corresponding friction velocities are an order of
magnitude smaller.

• σw/u∗ : Order unity for small z/|L| (Lec. 8). Increases with increasing z/|L| in
the unstable case (Lec. 8)

5



• σu/u∗ : Also order unity for small z/|L| (Lec. 8), but larger than σw/u∗ (Lec. 8,
Lec. 9). Increases with increasing z/|L| in the unstable case (Lec. 8). Fractional
rate of change with height in the ASL is smaller than that of σw/u∗, owing to the
fact that the u spectrum contains energy at low frequency that is missing from
the w spectrum

• u′w′/u2
∗ : Order −1 by definition of u∗. Exactly −1 for all height z/|L| ≤ 2 by

definition, if one takes literally the notion of the surface layer being a constant
stress layer. In truth, its magnitude decreases with increasing z/|L|, however the
change across the surface layer is not more than about 10-20 %

• w′T ′/(u∗T∗) : Order −1 by definition of u∗ and T∗ (recall T∗ = −w′T ′/u∗, given
as data). Exactly −1 for all height z/|L| ≤ 2 by definition, if one takes literally
the notion of the surface layer being a constant flux layer. In truth, its magnitude
decreases with increasing z/|L|, balancing the temperature trend; however the
change across the surface layer is not more than about 10-20 %

• kv z ε
u3∗

: Order 1. Exactly unity in a neutral surface layer (|L| = ∞), if one assumes

the TKE budget is in local equilibrium (see given data). Increases (decreases)
with z/|L| on the unstable (stable) side, balancing the sum of positive (negative)
buoyant production and shear production

3. The mean heat budget for an cloudless, unsaturated, horizontally-homogeneous ABL
may be written

∂θ

∂t
= − ∂w′ θ′

∂z

Assuming a well-mixed, very convective ABL (mean temperature θm), and neglecting
any entrainment heat flux, compute the mean surface kinematic heat flux density
over the interval if the mean temperatures at 11:00 and 13:00 Local Standard Time
were respectively θm = 18 K and θm = 23 K. Comment on the magnitude of this
heat flux in the context of its being a term in the surface energy balance, assuming
ρ0 cp ≈ 103 J m−3 K−1.

Skeleton response : This could not be done without knowing2 (or assuming a value
for) the boundary-layer depth, δ

• Integrate w.r.t. z to get the integral balance

∂

∂t

∫ δ

0

θ dz = (w′ θ′)0

(here I used the given fact that the entrainment heat flux (w′ θ′)δ = 0)

• Because we are given that this ABL is well-mixed, we make the approximation

∫ δ

0

θ dz = δ θm (2)

2Students were invited at the start of the exam to ask the instructor for assistance, in case any question
was unclear or ambiguous.
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and this leads to

∂

∂t
δ θm = δ

∂ θm

∂t
+ θm

∂ δ

∂t
= (w′ θ′)0

• To keep life simple, let’s neglect the term in ∂δ/∂t, so that

δ
∂ θm

∂t
= δ

5

7200
≈ (w′ θ′)0

• With (e.g.) δ = 103 m, we have (w′ θ′)0 = 5000/7200 = 0.7 K m s−1 or QH0 ∼
700 W m−2

• This is an unreasonably large figure for QH0, since even if the surface were dry
this would demand a net radiation of the same order.

• Including the term in ∂δ/∂t (or taking a deeper estimate for δ) must lead to an
even larger figure

• Apparently the stated rate of warming is incompatible with other assumptions,
e.g. absence of advection (advection cannot be accounted for in a 1-D balance)
or the rather deep ABL.

Data

Note : ρ0, T0 are the reference density and reference (Kelvin) temperature. For the purposes
of the exam, you may consider the quantities w′T ′ and w′θ′ identical (the kinematic heat
flux density).

• The turbulent kinetic energy (TKE, “k”) equation, assuming steady state and hori-
zontal uniformity, and assuming a uni-directional mean flow (u, 0, 0), is:

∂k

∂t
= 0 = −u′w′ ∂u

∂z
+

g

T0

w′T ′ − ∂

∂z
w′ (p′/ρ0 + e′ ) − ε

where e′ ≡ (
u′2 + v′2 + w′2) /2 and ε is the TKE dissipation rate.

• Obukhov length L = − u3
∗ T0

(
kv g w′T ′ )−1

• The height-gradients in mean windspeed and mean potential temperature, according
to the Monin-Obukhov similarity theory (MOST), are

kvmz

u∗

∂u

∂z
= φm

( z

L

)

kvhz

θ∗

∂θ

∂z
= φh

( z

L

)

where the temperature scale is θ∗ ≡ −w′θ′/u∗. It is acceptable to assume equality
of the von Karman constants (kvm = kvh = kv = 0.4), and that in the neutral limit,
defined by z/L → 0, the universal functions evaluate as φm(0) = φh(0) = 1.
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• The ‘surface energy balance’ on a reference plane at the base of the atmosphere is
expressed by the equation

Q∗ = QH + QE + QG

where all fluxes are in [W m−2]. Sign convention: Q∗ the net radiation, positive if
directed towards the surface; QH , QE the sensible and latent heat fluxes, positive if
directed from the surface towards the atmosphere; QG the ‘soil’ heat flux, positive
if directed from the surface into ground/lake/ocean. The Bowen ratio β = QH/QE

quantifies the partitioning of the energy surplus (or deficit) Q∗ −QG by the surface.
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Figure 1: Schematic profiles of ASL statistics.
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