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a  b  s  t  r  a  c  t

Line-averaging  optical  gas  detectors  offer  new  avenues  for the  indirect  estimation  of surface/air  exchange
fluxes. This  paper  examines  an  inverse  dispersion  technique  (gFG,  for  “generalized  flux-gradient”)  that
yields  an  estimate  of the gas  emission  rate  Q from  surface  area  sources,  based  on  the  difference  �C
between  line-averaged  mean  concentrations  along  two  (or  more)  paths  that are  vertically  inclined  or,
if  horizontal,  are  vertically  separated.  The inversion  to  extract  Q  from  �C  can  be performed  using  any
satisfactory  model  of turbulent  dispersion  over  a finite  source,  motivating  the  examination  here  of  several
analytical  solutions  to the  advection-diffusion  equation.  Each  provides  a  theoretical  value  u*�C/Q  for  the
round-air exchange
nverse dispersion
race gas fluxes

normalized  concentration  difference,  whence  an  estimate Q̃ of the  flux can  be deduced  from  measured
�C  and  u* (the  latter  being  the  friction  velocity,  for which  any  suitable  velocity  scale  could  be  substituted).
Discrepancies  between  the  solutions  are  explored,  and  the  error  that results  from  wrongly  treating  the
source  fetch  as  infinite  is quantified.  As  the fetch  increases,  gFG  relaxes  to the  standard  flux-gradient
technique  exploiting  the  (known)  Monin–Obukhov  concentration  gradient.

ublis

time-space mean concentrations C1, C2 for the lower and upper
©  2016  The  Authors.  P

. Introduction

This paper outlines an experimental method for determination
f surface-air exchange fluxes “Q” by inverse dispersion, exploiting
he flexibility of recently developed line-averaging, open-path opti-
al gas detectors. The technique, which for convenience we  label
FG (for “generalized flux-gradient”), is related to the flux-gradient
ethod in that it exploits a vertical difference (C1 − C2) in the mean

oncentration of the gas of interest. However whereas a standard
ux-gradient approach derives Q from vertically-separated point
ensors exposed within a constant flux layer, gFG is based on line-
veraged concentrations (along paths, furthermore, that are not
ecessarily parallel), and it applies even over a limited (but known)

etch of source. Inverse dispersion on the micro-meteorological
cale has to date more typically been based on horizontally-
eparated concentration measurements (see survey of Wilson et al.,
012), and in that configuration cannot easily deal with sources of

arge areal extent or uncertain perimeter.
Suppose the atmospheric surface layer (ASL) is horizon-
ally homogeneous, thus characterized by the friction velocity
*, Obukhov length L, surface roughness length z0 and mean
ind direction (a single sonic anemometer-thermometer provides

∗ Corresponding author.
E-mail address: jaydee.uu@ualberta.ca (J.D. Wilson).
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168-1923/© 2016 The Authors. Published by Elsevier B.V. This is an open access article u
hed  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

information allowing to deduce these quantities). We  will align the
horizontal coordinate x with the direction of the mean wind and,
with the purpose of illustrating gFG in an idealized source geome-
try, consider a uniform ground-level source of trace gas lying at x ≥ 0
and extending to infinity along the crosswind (y) axis. Now consider
a pair of gas detector paths that originate at (xe1, 0, ze1), (xe2, 0, ze2),
the “emitter” locations, and whose endpoints (the “reflectors”) lie
respectively at (xe1 + Dx1, 0, zr1) and (xe2 + Dx2, 0, zr2): Fig. 1 shows
a case of special interest, where both paths share a common emit-
ter/detector point (xc, zc) and lie in the vertical plane at y = 0 (this
is an eminently practical configuration, as it represents the case of
a fixed optical emitter/detector being sequentially aimed to high
and low reflectors). We  also accommodate the possibility that the
emitter point(s) xe could lie upwind from the leading edge of the
source, a configuration that might be chosen if (for example) the
source area were a pond, or ground inhospitable to the placement
of instruments, or a herd of animals confined within a paddock.

At the end of a measurement interval the instrument provides
paths.1 Assuming that “background” (or upwind) concentration
is spatially and temporally uniform on the scale of interest, the

1 It would be ideal if the instrument were inherently differential – an ideal that
some modern detectors almost (though not quite) attain; in the case of the instru-
ment described in the companion paper (Flesch et al., 2016) almost,  because the

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Schematic of a measurement setup for source estimation by inverse disper-
sion using a gFG (generalized flux-gradient) method. The upwind edge of the gas
source is at the origin (x = 0). The equipment returns the time- and line-averaged
gas  concentrations C1 and C2 along respectively the lower and upper grey lines, in
this case shown as slant paths with a common emitter/detector position (xc , zc). In
practice one would prefer that the detection paths lie within the growing gas plume
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whose envelope is indicated by the dashed line). For results shown in this paper
he two measurement paths have the same projection onto the horizontal axis, i.e.
x1 = Dx2.

ifference �C  ≡ (C1 − C2) is indifferent to its value (C0). Then if one
as a theoretical value � = u*�C/Q for the “conversion number”
elating the unknown source strength Q to the concentration
ifference, measured u* and �C  give an estimate

gFG = [u∗�C]meas

�
(1)

f the emission rate.
The next section will briefly review available analytical prescrip-

ions for the field of normalized concentration difference u*�C/Q,
ncluding solutions of the advection-diffusion equation. In a related
aper (Flesch et al., 2016) gFG is performed on the basis of a more
dvanced Lagrangian stochastic (LS) trajectory model, however the
urpose here is to look at the technique more broadly, evaluat-

ng a practicable technique that does not carry the computational
urden inherent in computing turbulent trajectories: for doing so
ecessitates a time consuming computation of backward-time tra-

ectories from representative points all along the (slanted) detector
aths. In such a context the ∼10% level of accuracy is about what
ne might realistically hope for, certainly for individual inversions
i.e. circa 15–30 min  averaging intervals): averaging over repeated
rials should narrow that uncertainty.

. Formulae for the conversion: u* �C  −→ Q

Stationarity of both the micrometeorological state and of the
racer field is assumed, and the following notation is used: c̄ =

¯ (x, y, z) represents the mean concentration at a single point, while
 will designate an average value of c̄ along a measurement path,

.e C is a shorthand notation for 〈c̄〉, with 〈 〉 designating the line-
veraging operation.

.1. Inversion using the MO  concentration profile (infinite fetch
mplied)

Two estimates of the conversion number � ≡ u*�C/Q, both
eglecting edge effects,  can be extracted from the Monin–Obukhov
oncentration profile, i.e.

¯MO(z) = c̄MO(z0) + C∗
[

ln
z −  c

(
z
)

+  c

(
z0

)  ]
(2)
kv/Sc z0 L L

here C* (≡ − Q/u*) is the tracer concentration scale, kv (= 0.4) is
he von Karman constant, and Sc (Schmidt number) is the ratio of

mitter/detector is common to all paths; but not quite, because (for instance) mea-
urements on the paired paths are sequential rather than simultaneous.
est Meteorology 220 (2016) 170–176 171

the eddy viscosity to the eddy diffusivity in the neutral limit. The
diabatic correction function  c is here evaluated as

 c =  c(�c) = 2 ln
[

1
2

(
1 + �−1

c

)]
, (3)

with �c given by (Dyer and Hicks, 1970)

�c = 1 + 5 z/L, L ≥ 0, (4)

�c = (1 − 16z/L)−1/2, L < 0. (5)

Eq. (2) can be applied to compute the difference in the line
averaged concentrations (“�MO”) or the difference between the
concentrations at the midpoints of the two beams (“�MO−mid”): if
the MO concentration profile were linear with height, these would
coincide. For the MO  solutions, the absolute location of the mea-
surement system relative to the edge of the source has no impact
on the conversion number u*�C/Q.

2.2. Formulae that account for limited fetch of source

We neglect variation of wind direction with height, and (as
already noted) assume sources extend to infinity in the y direc-
tion. All existing formulae for surface layer dispersion are solutions,
exact or otherwise, of an advection-diffusion equation (ADE), here2

ū
∂c̄
∂x

= ∂
∂z

[
Kc

∂c̄
∂z

]
, (6)

where ū = ū(z) is the mean wind profile and Kc = Kc(z) is the
profile of the eddy diffusivity for the species “c”. The flow
being (by assumption) horizontally homogeneous, the proper
(Monin–Obukhov) profiles for insertion in Eq. (6) are

ū = u∗
kv

[
ln
z

z0
−  m

(
z

L

)
+  m

(
z0
L

)]
(7)

and

Kc = (kv/Sc)u∗z
�c(z/L)

. (8)

The MO  function �c for the concentration profile is given above.
The corresponding function �m for the wind profile was specified
as (Dyer, 1974; Dyer and Hicks, 1970)

�m = 1 + 5 z/L, L ≥ 0, (9)

�m = (1 − 16 z/L)−1/4, L < 0, (10)

and implies that the diabatic correction function  m in Eq. (7) is

 m

(
z

L

)
= −5z/L, L ≥ 0, (11)

 m

(
z

L

)
= 2 ln

(
1 + �m

−1

2

)
+ ln

(
1 + �m

−2

2

)

− 2atan
(
�m

−1) + �

2
, L < 0. (12)

Exact solutions of Eq. (6) can be obtained if, in lieu of Eqs. (7) and
(8), the profiles of wind speed and diffusivity are parameterized as
power laws,

m
ū = ūH(z/Hu) = U z , (13)

Kc = KcH (z/HK )n = � zn. (14)

2 Eq. (6) reflects the restrictions of scope outlined above. Neglect of the along
wind velocity fluctuation and its correlation with the vertical velocity means that
this treatment is less satisfactory for strongly unstable stratification.
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“conversion number”) for three stability conditions z0/L = (0.001, 0,
− 0.001) and with xc ranging from −25 m to 100 m,  the x-wise span
of the beams being Dx = 50 m.  In terms of the overall pattern, the
conversion number is positive because C1 is from the lower path;
72 J.D. Wilson, T.K. Flesch / Agricultural a

he parameters ūH, KcH, m,  n are (or can be) chosen to reproduce
he mean wind speed and eddy diffusivity, as well as their height
radients, at the reference height(s) Hu, HK, which we shall hence-
orth cease to distinguish (H ≡ Hu ≡ HK): this results in

 = �m(H/L)
kvūH/u∗

, (15)

 = 1 − H

�c(H/L)

[
∂�c(z/L)
∂z

]
z=H
, (16)

¯H = u∗
kv

[
ln
H

z0
−  m(H/L) +  m(z0/L)

]
, (17)

cH = (kv/Sc)u∗H
�c(H/L)

. (18)

.2.1. Exact solution of the ADE for a surface line source
A solution to Eqs. (6), (13), (14) for a surface line source,

rovided originally by O.F.T. Roberts (Monin and Yaglom, 1977,
661), has been used by numerous authors, including van Ulden
1978) and Kormann and Meixner (2001). Defining r = 2 + m − n
nd � = (1 + m)/r, the concentration at (x, z) due to a continuous
crosswind-oriented) line source of unit strength localised at the
rigin (x = z = 0) is (Kormann and Meixner, 2001, Eqs. (12) and (20))

¯(x, z) = 1
	(�)

r

U z1+m

(



x

)�
e−
/x (19)

here 	(�) is the Gamma  function (for whose evaluation see
bramowitz and Stegun, 1953) and

(z) = U zr

r2�
(20)

s a transformed height. In order to obtain a theoretical value for
C1 − C2)/Q from Eq. (19) a double integration is needed. Each point
x, z) on a measurement path is exposed to an area source, such
hat (provided x > 0, i.e. the point in question lies downwind of the
eading edge of the source) Eq. (19) must be integrated to define the
aid area source; then secondly, one must sum up the contributions
rom every point along the beam. These operations have been per-
ormed numerically to obtain the conversion number �KM (details
elow).

.2.2. Exact solution of the ADE for a surface area source
Philip (1959) gave a solution to Eqs. (6), (13), (14)) for an area

ource, valid provided n /= 1 (i.e. neutral stratification is excluded).
omputing the conversion number (�P) based on Philip’s solution
ather than that of the previous section eliminates one integra-
ion, though summation along each measurement path remains
ssential.

As before, define r = 2 + m − n and � = (1 + m)/r, and let
 = r/(1 − n) ≡ 1/(1 − �). With

 = U zr

r2� x
(≡ 
/x), (21)

hilip’s solution for the mean (point) concentration due to a unit
rea source at the surface covering x ≥ 0 is

¯(x, �) = 1
(1 − n)	(�) �

(
r2� x

U

)1/ˇ

F(�, ˇ) (22)

here
(�, ˇ) = 1 − 	(�)�1/ˇ + �

 ̌ − 1
− �2

2!(2  ̌ − 1)
+ �3

3!(3  ̌ − 1)

− �4

4!(4  ̌ − 1)
+ · · · (23)
est Meteorology 220 (2016) 170–176

Philip’s solution is easy to evaluate, but fails to converge if the dis-
tance between the observation point (i.e. a point on the detector
beam) and the leading edge of the source is too small, which limits
its use in practice to detector paths that do not cross that lead-
ing edge. For detector paths lying downstream from the leading
edge it will be shown below that the conversion number �P from
Philip’s solution matches �KM perfectly, as (in the absence of dis-
cretization error due to the extra numeric integration needed for
�KM) it should.

2.2.3. Approximate solution of the ADE for surface area source
Wilson (1982)3 used a method suggested by Shwetz (1949)

to obtain an approximate series solution to Eq. (6) with
Monin–Obukhov profiles. This was restricted to stable or neutral
stratification, but has been extended (Wilson, 2015a) to the unsta-
ble case – albeit under the compromise of reintroducing the power
law wind profile. The conversion number (�W) is computed as fol-
lows. On any given vertical (i.e. at any given distance x from the
leading edge of the source) one first determines the depth zı(x) of
the gas plume, by solving an implicit equation (Wilson, 1982, Eq.
(24) or Eq. (24N) for the stable or neutral case, respectively; Wilson,
2015a, Eq. (21) for the unstable case). If at x a measurement path lies
above zı(x), no contribution to the line averaged concentration is
made; otherwise the contributing concentration is calculated using
Wilson (1982, Eq. 21) for the stable case, Wilson (1982, Eq. 21N) for
the neutral case or Wilson (2015a, Eq. 22) for the unstable case.

2.3. Numerical integration to obtain path-averaged
concentration

Each of the above analytical solutions provides an estimate
c̄(x, z) of the mean concentration at any point, the source itself
lying at x ≥ 0. Now, let zP = zP(x) for xe ≤ x ≤ xe + Dx define the
line-averaging measurement path, whose length (if it is a light

path) is
√
D2
x + (zr − zc)

2. Line averaging of the analytical (and
Monin–Obukhov) solutions for point concentration was performed
numerically to obtain the corresponding conversion numbers:

C ≡ 〈c̄〉 = 1
Dx

∫ xe+Dx

xe

c̄(x, zP(x)) dx ≈ 1
Dx

∑
i

c̄(xi, zP(xi)) �x (24)

where �x  = 0.1 m (
Dx).

3. Comparison of conversion numbers (�) for test
problems

For results to be shown the roughness length is z0 = 0.01 m.
All solutions have been evaluated with Schmidt number Sc = 0.64
(Wilson, 2015a,b), and unless otherwise stated the reference height
for power law profiles is H = 1 m.

To examine the importance of the location of the common point
(i.e. emitter/detector) relative to the leading edge of the source,
we begin with the detector configuration of Fig. 1: the two detec-
tor paths slant up (or down) from a common point at (xc, zc) with
zc = 1.5 m to zu = 2.5 m (or zd = 0.5 m).  Fig. (2) plots � ≡ u* �C/Q (the
3 Two  corrections to the equations given by Wilson (1982) are noted. The product
ır  on the second line of his Eq. (21) ought (in order to have been consistent with
his  Eq. (17), and correct) to have been ı̇r; and two  small terms arising from an
integration constant (“ı1”) had been neglected in the transition from his Eq. (20) to
his Eq. (24).
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Fig. 2. Estimates for the conversion number u*�C/Q in the case that the detec-
tion  paths span xc ≤ x ≤ xc + 50 m (i.e. Dx1 = Dx2 = 50 m),  slanting up (or down) from
zc = 1.5 m to zu = 2.5 m and zd = 0.5 m,  with the emitter/receiver point xc as much
as  25 m upstream or as much as 100 m downstream from the leading edge of the
source. Stratification is colour-coded. Legend identifies solutions of Wilson (1982,
2015; W82  or W15), Kormann and Meixner (2001; KM), and (Philip (1959; P). Hori-
zontal lines are the Monin–Obukhov solution, solid where correctly integrated along
the  paths, and dashed where the concentration difference is taken between the mid-
points of the beams. The heavy dashed black (neutral) curve is the Wilson (2015a)
solution with ū ∝ zm evaluated for z0/L → 0− , while the heavy black solid curve
is  Wilson (1982) for z0/L = 0 with the log wind profile. Monin–Obukhov solutions
n
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Fig. 3. As for Fig. 2, but for longer detection paths (Dx = 100 m) that span

ing) �C  to get Q, while still serious, is not so large as it had been
with the shorter paths.

4 In fact, even with very large xc the solutions fail to match perfectly with �MO,
eglect the edge effect, and the error in doing so decreases with increasing xc (i.e.
ncreasing upwind fetch of source).

nd the computed values of u*�C/Q are larger (smaller) under sta-
le (unstable) stratification than in the neutral case. As expected,
he conversion number �P derived from Philip’s (1959) area source
olution coincides exactly with that (�KM) derived (at the cost of
n extra integration) from the Kormann and Meixner (2001) point
ource solution.

In the case of neutral stratification, five distinct solutions for the
onversion number are given. The horizontal lines are the conver-
ion numbers that result from neglecting the finite upwind extent
f the source (�MO and �MO−mid). Then (recalling that Philip’s
olution does not cover the neutral case) it remains to relate the
M solution to the solutions identified as W82  and W15. With
0/L = 0, the Kormann–Meixner (exact) solution and the Wilson
1982) analytic solution share the same eddy diffusivity profile, viz.
c = (kv/Sc)u∗z (implying n = 1), but they differ in that the former
ses a power-law wind profile and the latter the log wind profile.
n the evidence of Fig. (2) the two (KM, W82) neutral solutions dif-

er, which raises the question as to whether the difference stems
i) from the differing wind profiles, or (ii) from the loss of accuracy
nherent to the (approximate) series solution procedure invoked
y Shwetz (1949) and that underlies Wilson (1982, 2015a). The
uestion is easily answered, because the Wilson (2015a) solution
shown with the label “W15, ū ∝ zm” on Fig. 2) had reverted to a
ower law wind profile and so, in its neutral form, it shares exactly
he same profiles as the Kormann–Meixner solution, yet, differs

rom it. Furthermore the “W82, ū ∝ ln z” and “W15, ū ∝ zm” solu-
ions for z0/L = 0, respectively with the log and power-law wind
rofile, virtually overlap: hence it is certain that the discrepancy
xc ≤ x ≤ xc + 100 m,  slanting up (or down) from zc = 1.5 m to zu = 2.5 m and zd = 0.5 m.
(Philip solution, equivalent to KM,  not shown).

between the Kormann–Meixner solution and W82, W15  is (in the
neutral case, at least) due principally to the loss of accuracy inher-
ent in Shwetz’s splitting of the advection-diffusion equation (e.g.
as exemplified by Eqs. (14) and (15) of Wilson, 2015a), rather than
owing to their distinct representations of one or both of the profiles.

Be that as it may, we notice that as the detector beams are shifted
far downwind from the leading edge (i.e. as xc becomes large) the
KM (equivalently, P) and W solutions converge – as expected –
towards the appropriate Monin–Obukhov solution,4 (solid horizon-
tal lines, colour coded by stability). However when xc is not large we
see that a significant degree of error would be incurred by inverting
the measured concentration difference using the Monin–Obukhov
profile, i.e. neglecting the finite extent of the source. In unstable
stratification, due to the rapid deepening of the plume (and the
“constant flux layer” at its base), the situation is very forgiving:
indeed Fig. 2 shows that using the MO profiles will return an accept-
able estimate provided the upwind end of the paths does not lie
upwind of the leading edge (of course, outcomes depend in detail on
the emitter and reflector heights zc, zu, zd). In neutral stratification
greater caution is needed with placement of the paths relative to the
edge of the source, if one were to invert using the Monin–Obukhov
profile; while in stable stratification it seems essential, for likely
configurations of the detectors, that one would have to invert tak-
ing account of the fetch. Fig. 3 differs from Fig. 2 only in that the
pathlengths have been doubled. As a result, when the measurement
paths originate upwind from the leading edge of the source the
error of neglecting the finite fetch of source in interpreting (invert-
presumably because the power law profiles can match the MO profiles at only a
single height H, the chosen reference height (this is not evident from the diagram).
The choice H = 1 m made here is arbitrary, and any other choice would be equally
so.
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Fig. 4. Ratio QADE/QMOFG of the emission rates that would be inferred by inverse dis-
persion based on the advection-diffusion equation (QADE computed using Wilson,
1982, 2015a solutions) and by interpreting the measured concentration difference
as  that of a standard Monin–Obukhov profile (QMOFG). The latter is based on the dif-
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Fig. 5. As for Fig. 4, except that here the averaging path length is 100 m.

Fig. 6. Solutions for the conversion number � = u*(C1 − C2)/Q in the case that the
reflectors are upwind from their common emitter/detector, and therefore nearer to
the  leading edge of the source (at x = 0). Horizontal lines are �MO, and curves are �W

(Wilson, 1982, 2015a); the dotted curve is the neutral limit of the Wilson (2015a)
solution with power law wind profile. The detector paths, both 50 m in along wind
erence of MO concentrations, correctly integrated along the beams, but neglecting
he  finite extent of source. Detector path lengths are 50 m,  and (as throughout the
aper) the leading edge of the source is at x = 0.

Evident from Figs. 2 and 3 is that although the conversion num-
ers � as computed by the Kormann–Meixner (or equivalently,
hilip) and Wilson solutions to the ADE differ by up to about 20% in
ome circumstances, nevertheless they are in qualitative agreement
nd collectively flag the seriousness of neglecting the implication
f a limited fetch. A useful way to emphasize this is to focus on
he error in the inferred flux that will arise if the finite extent of
he source giving rise to the path-averaged concentration signals
s neglected (Figs. 4 and 5). If we focus on the very practical con-
guration with the emitter/detector placed at xc = 0 (edge of the
ource) then in the case where the pathlength is only 50 m Fig. (4)
ndicates that in neutral stratification an error of ∼50% should be
xpected (as a consequence of having neglected the fetch limita-
ion). The case of unstable stratification is much more forgiving, and
robably even more so than Fig. 4 indicates because the role of the
long wind velocity fluctuation u′, which for L < 0 acts to deepen the
onstant flux layer, is neglected in the present analysis. However in
strongly) stable stratification the error will exceed 100%. Increas-
ng the pathlength to 100 m (Fig. 5) provides some advantage: now

ith an emitter at xc = 0 the error in neutral stratification drops to
20%.

.1. Other path configurations

In terms of the configuration of the detector paths, it is evident
hat the line-averaged concentration difference �C will be more
trongly weighted at positions x where the paths have greater ver-
ical separation. The configuration shown in Fig. 1 gives least weight
o the portion of the paths that is farthest upwind, whereas for the
everse configuration (reflectors lying upwind of the common emit-
er/detector) the opposite is true. Fig. 6 confirms that this ‘reverse’
onfiguration is less favourable, in terms of the needed upstream
etch of source.

It is also of interest to compare the slant path configura-

ion (resembling Fig. 1, with Dx1 = Dx2 = 50 m)  with the case that
he detector beams, while unchanged in terms of their horizon-
al extent, are configured horizontally so as to achieve a larger

ean height difference �̄zP . For the slant path configuration
extent, slant down from zu = 2.5 m and up from zd = 0.5 m to zc = 1.5 m,  results being
shown for the emitter/collector position ranging 0 ≤ xc ≤ 150 m.  (Note: with xc = 0
the  detector paths lie entirely upwind of the leading edge.)

(underlying Fig. 2) one has �̄zP = 1 m,  while paired horizontal
paths to/from the same reflectors at zr = (0.5, 2.5) m obviously yield
�̄zP = 2 m.  Accordingly, and provided the (still, common) coordi-
nate xc of the two emitter/detectors is sufficiently far downstream
from the leading edge of the source, the signal level u*�C/Q is
much larger with horizontal beams. However Fig. 7, covering only
the neutral case and with QADE evaluated using the Wilson (1982)
solution, shows that the configuration with horizontal paths is less
forgiving in regard to the necessary fetch xc of source upwind from
the emitter/detectors, because in this case there is equal weight-
ing of the concentration difference c̄1(x) − c̄2(x) all along the path

xc ≤ x ≤ xc + 50 m.  Provided xc exceeds about 40 m,  the penalty for
neglecting the edge effect in the computation for Q is the same for
both configurations, and smaller than 10%.
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Fig. 7. Ratio QADE/QMOFG of the emission rates that would be inferred in neu-
tral stratification by inverse dispersion based on the advection-diffusion equation
(QADE computed using Wilson, 1982 solution) and by interpreting the measured
concentration difference as that of a standard Monin–Obukhov profile (QMOFG).
The  detection paths span xc ≤ x ≤ xc + 50 m and results are shown with the emit-
ter/detector coordinate ranging −25 ≤ xc ≤ 100 m.  Two  path configurations are
compared: the slant paths, i.e. paths slanting up (or down) from zc = 1.5 m to
zu = 2.5 m and zd = 0.5 m; and paired horizontal paths (the lower at 0.5 and the upper
at  2.5 m)  having the same projection onto the horizontal plane as do the slant paths.

Fig. 8. Conversion number � = u*�C/Q for slant path flux-gradient measurements
under neutral stratification over the topography shown in the lower panel, repre-
senting the detector beams as being curved so as to incorporate correctly their local
height above ground. � is computed using either the Wilson (1982) concentration
field (accounting for limited fetch) or the Monin–Obukhov profile (which assumes
the  fetch of source is infinite). The detection paths span xc ≤ x ≤ xc + 100 m,  slanting
u
h

3

t
b
fi
z
s
T
w

p  (or down) from zc = 1.5 m to zu = 2.5 m and zd = 0.5 m,  where the origin for these
eights is ground level upwind from the terrain.

.2. Influence of terrain

Fig. (8) is a simplistic view of the impact of a terrain fea-
ure on the inverse dispersion procedure, ground height h = h(x)
eing specified as a gentle crosswind ridge. The path con-
guration is that of Fig. 1 with pathlengths Dx1 = Dx2 = 100 m,
c = 1.5 m and (zr1, zr2) = (0.5, 2.5) m (these heights being mea-

ured relative to ground level upwind from the terrain bump).
he calculation underlying Fig. 8 assumes the surface layer
ind and turbulence fields are not perturbed by the terrain,
est Meteorology 220 (2016) 170–176 175

i.e. effectively this is an undisturbed surface layer in the ter-
rain following coordinates (x, z − h). Then the entire effect of the
terrain is merely to perturb the effective height above ground
of the detector beams, and the analysis is equivalent to the
situation of curved detector paths over flat terrain (Hu et al., 2016
found that accommodating undulations of the ground in this man-
ner does improve the performance of inverse dispersion using the
backward Lagrangian stochastic model WindTrax).  According to
Fig. 8, if one were to invert to obtain the flux by adopting the MO
profile (ignoring the fetch limitation), then one had best properly
integrate the MO  concentration difference along the beam (e.g. Eq.
(24)), rather than difference the point concentrations at the beam
midpoints.

4. Conclusion

The generalized flux-gradient (gFG) technique evaluated here
exploits the capabilities of open path, line-averaging gas sensors.
Based on the above findings and those of (Flesch et al., 2016) we
recommend that if the fetch of source upwind of the concentration
detectors limits depth of the constant flux layer, then the inversion
(to get source strength Q from a mean concentration difference �C)
should be done using a dispersion model that takes into account
the source boundaries, and preferably without the approximations
inherent in the analytical treatments surveyed above: in practise
the backward Lagrangian stochastic (bLS) method is ideally suited,
in every respect except its computational rapidity. At sites (and
with source boundaries) compatible with their underlying assump-
tion of crosswind symmetry, any of the Kormann–Meixner, Philip,
or Wilson concentration fields could be adopted if it were desired to
make a rapid, provisional estimate of the flux (with the proviso that
the Philip solution does not apply to paths that cross the leading
edge of the source). Simplest of all is to invoke the Monin–Obukhov
concentration profile and compute the conversion number �MO; if
doing so, rather than evaluate the theoretical difference between
concentrations at the two  path midpoints it is preferable to inte-
grate the concentration difference along the paired beams, using
actual beam heights above the local terrain.

Should one choose to take the shortcut of neglecting the compli-
cations that an LS-based inversion entails (viz. mapping the source
boundary, and carrying through what can be a time consuming cal-
culation of the many needed ensembles of trajectories using, for
instance, WindTrax),  the results given here indicate that in unsta-
ble conditions (and to a lesser extent, neutral) the loss of accuracy
is small for easily realizable configurations of the detectors: in real-
ity, it is probably even smaller than we have indicated, owing to the
impact of the along wind velocity fluctuation (u′) and more impor-
tantly its correlation with the vertical velocity (Wilson, 2015b). In
stable stratification however there is no shortcut; if the fetch of
source is “small” one will have to perform the inversion using one of
the limited-fetch conversion numbers � (as above), or revert to the
(more flexible and more rigorous) Lagrangian stochastic treatment.
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