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Abstract. By splitting the turbulent kinetic energy into two wavebands and adopting as the turbulence 
timescale the ratio k/E of the kinetic energy in the low-frequency band to its turnover-rate, the second-order 
closure scheme of Launder et al. (1975) has been adapted for flow through vegetation. Predictions of the 
model compare satisfactorily with observations of the mean windspeed and (somewhat less satisfactorily) 
with the turbulent velocity variances in two very different canopies. 

1. Introduction 

There are several reasons for wishing to predict the nature of turbulent flow through 
vegetation on the basis of a few simple inputs (e.g., a physical description of the crop 
or forest, and values of wind-speed, temperature, humidity, and net radiation at some 
reference height above the canopy). As examples, one may cite concern with under- 
standing the process by which a forest acts as a sink for harmful pollutants, and the 
ongoing efforts to understand (and perhaps thereby beneficially manipulate) crop inter- 
action with the environment. Several disciplines (hydrology, agricultural and forestry 
science, meteorology, soil science) share an interest in being able to predict canopy 
evapotranspiration. 

Prediction of canopy flow is in principle pre-requisite to or co-requisite with prediction 
of the simpler (but itself complex) problem of scalar diffusion (heat, water vapor, carbon 
dioxide, etc.) within a canopy. On the other hand, Raupach (1987) has shown that the 
Lagrangian approach to scalar transport yields qualitatively-reasonable results for 
diffusion from arbitrary but complex source distributions even with a very crude 
description of the canopy flow (homogeneous turbulence, no mean wind shear). 
Coupled with the fact (discussed in Section 6) that the transfer resistances moderating 
the source strength in natural canopies are usually relatively insensitive to windspeed, 
Raupach’s finding supports the argument (J. M. Norman, personal communication) 
that in most circumstances (except perhaps very light winds) the flow need not be known 
in great detail in order to predict heat, vapor, and CO, diffusion with sufficient accuracy 
to predict crop growth rate (the latter, of course, depending on other factors). 

Attempts to predict canopy flow are at present restricted to the Eulerian formulation. 
The purely conceptual case of two-dimensional inviscid flow allows a Lagrangian 
treatment (because vorticity is then conserved). Progress is being made in the simulation 
of real high-Reynolds-number flows by the (Lagrangian) ‘random vortex method’ (a 
review is given by Leonard, 1985), but for the time being, restricted computer power 
limits application to flows which are nearly everywhere irrotational so that relatively 
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small numbers of vortex elements need to be tracked. In contrast, mass transport may 
readily be predicted using Lagrangian ‘random walk’ methods because the governing 
equation is a simple convection-diffusion equation -whereas the instantaneous vorticity 
and momentum transport equations are complicated, respectively, by the vortex- 
stretching/tilting terms and pressure-gradient terms. A readily observable consequence 
of this distinction between mass and momentum transport is that momentum 
sources/sinks can cause upstream influence under conditions in which a co-located 
scalar source would simply produce a downstream advective-diffusive plume. 

Given that we are currently restricted to the Eulerian approach and given the 
impossibility of implementing simulations on a grid st&iciently fine to resolve the 
smallest eddies and variations in canopy structure, some form of averaging of the 
governing equations is necessary. In the past ten years, there have been fundamental 
examinations concerned with proper spatial averaging of canopy flow statistics and 
development of the correspondingly-averaged budget equations governing the flow 
(Wilson and Shaw, 1977; Raupach and Shaw, 1982; Finnigan, 1985). There have also 
been several important canopy flow experiments. 

The wind tunnel canopy flow experiment of Raupach et al. (1986) included an 
investigation of the importance of complex terms such as dispersive fluxes (fluxes due 
to correlated spatial variation of the time-average statistics) which appear in the 
spatially-averaged budget equations. (It had been recognized for some time that 
dispersive fluxes were potentially of importance in the flow above very rough surfaces; 
see for example, Mulhearn, 1978; Mulhearn and Finnigan, 1978.) 

The conditional sampling analyses by Finnigan (1979), Shaw et al. (1983) and 
Raupach et al. (1986) have revealed the highly intermittent nature of canopy turbulence 
and the overwhelming importance of occasional penetrations of the canopy by gusts. 
It has been found that deep within a variety of canopies, local production rates of 
property variance and flux are negligible in comparison with the rate of import from 
higher levels, which is represented in the budget equations by the corresponding 
turbulent transport terms. To quote Finnigan (1985) ‘the role of large eddies is described 
by the transport terms in the second-order equations. In the language of spectral 
analysis, we would say that the transport term is weighted to low wave numbers’. 

An important aspect of this new physical insight into the nature of canopy flow is that 
it clarifies the observation that first-order closure (K-theory) does not provide a 
physically satisfactory parameterisation of the turbulent fluxes, which may in fact be 
directed against the corresponding mean gradient. If one wishes to derive a more 
rigorous version of K-theory from the second-order equations, it is necessary, among 
other things, to drop the very turbulent transport terms which have now been shown 
to be significant. In consequence, most recent attempts to simulate canopy flow numeri- 
cally have employed higher-order closure. (As will be discussed in Section 2, concern 
remains that most higher-order models in effect employ K-theory at a higher level.) An 
exception to this is the work of Li et al. (1985) who presented a first-order closure model 
in which an additional (and empirical) term was added to the streamwise momentum 
equation to enhance the predicted penetration of the momentum flux. Good agreement 



A SECOND-ORDER CLOSURE MODEL FOR FLOW THROUGH VEGETATION 373 

between measured and predicted wind-profiles for a corn canopy and a pine forest was 
demonstrated, but there were six constants available to be assigned (specifically the drag 
coefficient, their a, /3, c2, and the two constants appearing in their Equation (7a)). 

Wilson and Shaw (1977) demonstrated that reasonable agreement with observations 
may be obtained using second-order closure. (Higher-order closure schemes themselves 
yield numerous assignable constants; however, it is normal practise for these to be 
optimised with reference to some basic flow, perhaps homogeneous isotropic turbulence, 
and left unchanged in the application to more complex flow.) Meyers and Paw U (1986) 
adopted third-order closure in order to improve the simulation of the triple-velocity 
correlation terms (i.e., the transport terms) appearing in the stress budget equations 
which, to reiterate, are now known to be of great importance. Meyers and Paw U were 
able to predict wind profiles satisfactorily within a number of very different canopies 
(the drag coefficient being chosen for each canopy to give optimum agreement). 

This paper presents a second-order closure model for neutrally-stratified flow through 
a horizontally-uniform canopy which differs in several respects from earlier second- 
order models. The basic closure scheme used here was developed by Launder et al. 

(1975, hereafter LRR), and Hanjalic and Launder (1972). It has proven successful in 
a wide range of flows without modification of empirical constants (which were initially 
optimised by LRR). It was hoped that this closure scheme might be applicable without 
modification to canopy flow, but this proved not to be the case. 

The author wished to avoid the necessity, common to all prior higher-order closure 
canopy-flow models, of arbitrarily specifying a ‘time-scale’ for the turbulence. The LRR 
closure scheme satisfies this aim, in that the required timescale is formed as k/c, where 
k is the turbulent kinetic energy (TKE) and E the rate of dissipation of the TKE. 

The general line of development used to adapt the LRR scheme to canopy flow was 
to follow the suggestion of Hanjalic et al. (1980) that the TKE be split into two or more 
(in the present case 2) frequency bands. This is a particularly useful idea for canopy flow 
because of the complex energy transformations caused by viscous and form drag on the 
vegetation. Within a canopy, these drag forces not only bring about ‘wake production’, 
the conversion of mean flow kinetic energy (MKE) to turbulent kinetic energy, but also 
extract energy from the turbulent eddies and convert this to turbulent energy at very 
small (element wake) scales, thereby acting in addition to the normal energy cascade 
process. 

The experimental evidence (Raupach and Shaw, 1982; Raupach and Thorn, 1981) 
is that although the rate of wake production of TKE is comparable to the shear 
production rate, turbulence on the scale of the element wakes is not a large proportion 
of the total variance, presumably being subject to very rapid dissipation due to its small 
scale*. We may, therefore, anticipate that it would be advantageous to separate the TKE 
into at least two frequency bands and, guided by intuition and observation, estimate the 
transfers into and out of each band. A diagnostic analysis of experimental canopy 

* A similar situation is believed to exist in the near wake of porous windbreaks, where in spite of strong 
MKE + TKE conversion at the fence, leeward TKE levels are strongly reduced relative to the approaching 
flow (Wilson, 1985). 
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turbulence data (from a corn canopy and from a wind tunnel experiment) was carried 
out by Shaw and Seginer (1985). These authors discussed the kinetic energy balance 
by splitting the TKE into two frequency bands, which they denoted ‘turbulent shear 
kinetic energy’ (SKE, low-frequency band) and ‘wake kinetic energy’ (WKE, high- 
frequency band). Symbolic budget equations for each band were written, based on the 
overall constraint of conservation of energy, and the term corresponding to conversion 
of SKE to WKE was evaluated directly. In the case of the corn canopy, wake conversion 
of SKE to WKE was found to balance shear production and turbulent transport (so 
that the normal energy cascade by vortex stretching was bypassed) and in the artificial 
canopy, this term was also the most important sink for large scale TKE. 

Ideally, a turbulence model would correctly simulate the entire turbulent kinetic 
energy spectrum and its response to flow distortion and flow/solid interactions. For 
example, McAneney and Judd (1987) discuss the damaging oscillation of kiwi fruit in 
response to excitation by gusts at or near the natural frequency of the fruit and argue 
that different trellice and shelter strategies may augment or diminish the spectral power 
at these damaging frequencies. Adoption of a two-band model (able to describe the 
spectrum in terms of a pair of time-scales) is a (very small) step towards prediction of 
the full spectrum. 

The present second-order model uses an emperical formulation of the rate of 
conversion from SKE to WKE. It differs further from the original LRR closure scheme 
in the parameterisation of the triple-velocity correlations. 

The following sections will give the governing equations, a description of the numerical 
solution procedure, and a comparison of numerical solutions with observations for both 
a corn canopy and an artificial wind-tunnel canopy. 

2. Governing Equations 

Wilson and Shaw (1977) showed that if horizontal averaging is performed with due 
attention to the fact that the equations of motion are valid only within airspace, extra 
terms arise which may be formally identified with the canopy-airflow interaction. 
Raupach and Shaw (1982) and Finnigan (1985) have, respectively, presented 
time/horizontal-plane and time/volume-averaging schemes, and there is no doubt as to 
the valuable role of these methods as a means to ensure that self-consistent parameterisa- 
tions of canopy flow are employed. 

Ideally, one would derive from the Navier-Stokes equations the governing equations 
for the variance (or covariance, etc.) within any frequency band, i.e., governing 
equations for SKE, WKE, and for any other quantity whose level it is deemed necessary 
to describe using frequency bands. Proper averaging of these equations should then 
ensure consistency, so that a parameterisation of source terms in the mean momentum 
equation would methodically imply corresponding terms in other equations. However, 
one cannot adopt band-average budget equations on an intuitive basis and expect that 
the rigorously-derived ‘whole spectrum’ equation will give the correct rules for con- 
sistency of parameterisation. Therefore, the author has not attempted to derive 
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plant/airflow interaction terms in the budget equations for high-order statistics; just as 
it proves counter-productive to account for MKE + TKE conversion except if this 
energy is placed in a high-frequency band, it may be counter-productive to include extra 
terms in, say, the ‘whole spectrum’ budget equation for w). 

Conservation of streamwise (x) momentum is expressed by 

au) __ 
~ = -cCdazJ IUI 

az 

where a(z) is the leaf area density [ mz/m3 1. The momentum sink term on the right-hand 
side of Equation (1) is a conventional parameterization of the plant-airflow interaction. 

The dual band TKE balance used here is a similar but simplified version of that 
outlined by Shaw and Seginer (1985). For convenience, the low-frequency-band 
turbulent kinetic energy, SKE, will be denoted by k, the rate of loss of SKE to WKE 
by +, and the rate of viscous dissipation of SKE by a,,. Then E = +d + a,, is the total 
rate of loss of SKE, and the ratio k/c will be used as the turbulence time-scale which 
appears in the closure scheme. 

The budget equations for the tangential stress and the low-frequency band (SKE 
band) normal stresses may be written symbolically as 

where the terms are, respectively, 

(a) PRODUCTION 

(b) REDISTRIBUTION (PRESSURE STRAIN) 

These terms have been parameterised as 

where 

R, , = -c, t/k(G - $a,k) , 

R,, = -c& - f~6J, 

R;, 1 = 4 G’z(~n,n,6,i - :an,nj - $Gn,ni>f ! 
0 

. 
Z 
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Here P = u,((au/&) is the SKE production rate. The combination R, 1 + R, 2 is the 
simplified pressure-strain model of LRR. The added term R,>, i is a wall-proximity 
correction to the pressure-strain and is necessary to yield the relatively large ratio of -- 
streamwise to wall-normal velocity variance (in our case u’*/w’*) found in wall flows 
compared to the corresponding variance ratio in free turbulent flows. The nk appearing 
in R;, i are components of the unit vector normal to the surface (nk = 6,,). The form 
used here for R,;, i was suggested by Shir (1973) and used by Gibson and Launder 
(1978). The wall-proximity function has been evaluated as 

f(b) = Cf,,(k3’*/s)/z , 

with Cr,, = 1.0/(k,k3’*), where k, is von Karrnan’s constant (k, = 0.4 herein). With this 
choice for C.ir, the function f(Z/z) has the value unity in the case where the flow is in 
local equilibrium. 

Note that R, and each of its constituents vanish -the redistribution terms disappear 
in the SKE budget. These terms represent interchange of SKE from component to 
component and in the absence of a wall, act to return the turbulence towards isotropy. 

(c) TRANSPORT 

Neglecting pressure transport, one has Tq = - (8/az)~. 

In order to parameterise ui z$ u;, Hanjalic and Launder (1972) simplified the corre- 
sponding budget equation by neglecting shear production, adopting the quasi-Gaussian 
hypothesis for the quadruple velocity correlation, and replacing the terms involving 
pressure with a simple return-towards-isotropy term: 

s 

ax, 
+fl 

aipg au,: l.4; . 

ax* 
+i@ -1 8x1 

In order to increase the predicted velocity variance within the canopy, the value of c, 
has herein been modified according to 

c, = cs,,(l + LA1 sin(nz/H)), z 5 H; 

where c, = 0.11 (the value recommended by LRR) and LA1 is the leaf area index. 
A serious theoretical objection to this type of parameterisation of the transport terms 

is that in effect, a gradient-diffusion formulation is involved. For example, the gradient 
aw”/az appears in the budget equation for w’*, and under the present scheme wf3 is 
parameterised as 

ad* 
wf3= -Keff -, 

az 
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where the ‘effective diffusivity is Keff = 3c, (k/s) W’ 2. For comparison, the first-order mass 
diffusion parameterisation is 

for the vertical flux of a scalar whose instantaneous concentration is c = C + c’. It is a 
well-known consequence of Taylor’s (192 1) exact theory of diffusion in homogeneous 
turbulence that close to a source (i.e., within a small number of times-scales or 
length scales from the source) the mass dithrsivity K depends upon time since release 
(or distance from the source); the far-field value C? z, (a property of the turbulence, since 
ais the standard-deviation of the velocity fluctuation and 2, is a Langrangian time-scale) 
is merely the upper bound. Deardortf (1978) has shown that if one is to describe 
diffusion from sources in homogeneous turbulence using higher-order closure of the 
Eulerian conservation equations, the effective diffusion coefficient which appears at 
higher-order retains a dependence on time since release (or distance from the source). 
DeardorlI concludes that the higher-order closure methods are ‘inherently unable to 
solve the diffusion problem accurately in the general case of pollutants being released 
at various points at different times’ and that ‘any assertion that the closure constants 

are universal has little relevance in practise’. 
There is no reason to believe that these theoretical prohibitions on the use of a 

gradient-diffusion model at higher order are not equally applicable to the case (of 
predominant concern here) of momentum transport. An alleviating factor for many 
applications of higher-order flow models is that usually the momentum sources and 
sinks will be located at walls (where the turbulence length and time-scales will be small) 
rather than being distributed within the flow domain. This is clearly not the case for 
canopy flow, the vegetation in effect being a distributed momentum sink. 

(d) DISSIPATION 

It has been assumed that .sO vanishes unless i = j. The values E,,, E,,,,, .szz are the rates 
at which low-frequency-band (SKE-band) variance is transferred to WKE or converted 
to internal energy. It is assumed that the instantaneous drag vector has magnitude 
c,a(u” + u2 + w2), lies opposed to the instantaneous wind vector, and has components 

FDx = cdau dm, 

FDy = cdav dn, 

FD, = cdaw Jm. 

Assuming u B 1 v/ ,I WI (which is not a very safe assumption, especially deep in the 
canopy), one may write 

FDx E cdau2, FDy z cdauv , FD, g cduw . 
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By splitting variables into mean and fluctuation, and averaging in the normal way, 
one obtains, here showing only leading terms in cdu 

- 

aulz= -4c &p+ . . . 
at d 9 

-zc auv’Z+ . . . 
at d , 

awl2 ~ = -22cdaGW’2 + . . . ( 
at 

The rate of loss of SKE to WKE is, therefore, approximated as 
- - - 

.5yd = +,au(4U’z + 20’2 + 2w’2) ; 

and E = qd + E,,. Viscous dissipation has been parameterised as 

E 
(c3 k)3’2 

cc =-3 
k”Z 

which is the correct form in the absence of a canopy. Then 

(3) 

- 
&XX = 4cdaii u” + $&,, , Eyu = 2cdati VI2 + $&,, , E, = 2Cda~d2 + $,, . 

The energy transformation pathways incorporated in the model are shown in Figure 1. 
Shaw and Seginer (1985) estimated the rate of conversion of SKE to WKE to be 

- - 
c,a(V3 - ii UV) ) 

where V is the instantaneous wind speed (their literal result has here been doubled in 
accordance with the author’s habit of not including a factor of $ in Equation (1)). The 
expression used here, Equation (3), may be shown to be the leading term following from 
Shaw and Seginer’s expression on the dubious assumption that 1 v/u 1, / w/u 1 < 1. 

The budget equation for WKE is assumed to be 
- - - 

0 = +c,uZ(~U’~ + 2~” + 2~‘~)) SKE+ WKE 

+ cdaii3, MKE + TKE (4) 

+ T- cWKE. 

Transport is parameterised as T = (LJ/az) [c,k/tw’2 (aWKE/az)] and dissipation as 
sWKE oc (WKE)3’2/1, where 1 = minimum (cqd, k,z) with d being an estimated length 
scale for the wake turbulence. In simulations carried out to date, the calculated level of 
WKE has had no feedback effect upon the levels of SKE, mean velocity, or Reynolds 
stress, so that there is in fact no necessity to include Equation (4). 

The governing equations have been cast in dimensionless form using scales H and 
u *n. The actual velocity at any height which corresponds to a specific reference (above 
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Fig. 1. Schematic of the kinetic energy transformation pathways included in the model. The heavy arrows 
denote transformations due to the vegetation inbedded in the flow. Symbols are defined in Section 2. 

canopy) velocity r&f may easily be obtained from the dimensionless predictions because 
the value of U,,,/U * N will itself be predicted by the model. 

On the assumption of a neutral surface layer in local equilibrium (advection and 
transport of the TKE negligible, TKE production rate = dissipation rate; height- --- 
independent mwI, u’~, vt2, w”; logarithmic velocity profile), the LRR Reynolds-stress 
equations reduce to a set of algebraic equations which determine the stresses. The choice 
c, = 1.8, c2 = 0.6, c; = 0.5 yields 0,/u, = 2.15, oJu* = 1.63, a&, = 1.21 in satis- 
factory agreement with measured values above the canopy in the experiments to be 
simulated. Then k/u, . 2 = 4 37 and the choice C, = l/4.37 (for the constant in the 
expression for the ‘cascade’ conversion of SKE to WKE) ensures that at local 
equilibrium the dissipation rate matches the shear production rate P = u’, /k,z. 

3. Numerical Method 

3.1. GENERAL APPROACH 

The general approach has been to follow the SIMPLE numerical method described by 
Patankar (1980). Although the ingenious and effective treatment of the mean pressure- 
mean velocity field coupling which is characteristic of SIMPLE is not needed for a 
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one-dimensional flow (YC = 0; @/ax = 0), other features of SIMPLE such as the scheme 
to ensure necessarily positive variables (e.g., TKE) remain positive recommend its use. 

The equations are analytically integrated along the vertical axis between limits zi and 
z2, e.g., 

[ul]:; = -C&U IUI (z2 - q), 

to obtain difference equations which express conservation in layers. -- 
Odd velocity moments (Ti, zJ3, U’ HJ” , . . .) are defined at grid points which are offset - - 

relative to the grid points for even moments (u’ w’, u”, . . .). This (staggered) grid is set 
up so that even-moment (Reynolds stress) grid points are at z = H and at the top 
boundary. The lowest G-grid point is at the ground. To each grid point there corresponds 
a ‘control layer’. This choice of grid-point positioning is most natural because in the 
difference equation for each mth-order moment, differences of (m + l)th-order moments 
arise. 

The second-order closure scheme yields diffusion terms in the Reynolds stress 
equation. Because of these diffusion terms, the difference equations are in effect 
‘neighbour’ equations, relating each grid point value to its over- and under-lying 
neighbours. With special neighbour relations chosen for the boundary values, one may - 
then solve for the column of values of u’~ (etc.) using a tridiagonal matrix algorithm. 
From an initial (crude) guess of the solution, one proceeds iteratively towards a final 
solution. 

In the case of canopy flow, it is advantageous to treat the velocity U as being related 
not only to its immediate over- and under-lying velocity neighbours U,, ti,, but also to 
its momentum-flux neighbours, i.e., to form a ‘stress-velocity’ (su) column whose 
elements are 

n I II 
. . . . . . ) ii,m ,ii,u’w’,u,u’,ii ,... 

J 
From the budget equations one may now form neighbour relations of the form 

aCsvC = a,..,,sv,, + a,sv, + aSsvS + aSSsvSS + bsv . 

With the addition of special relations at the boundaries, one now has to invert a 
penta-diagonal matrix to obtain the latest guess for the stress-velocity field given the 
present estimates of the coefficients a,, aN,,, . . . a,, and the ‘source term’ bsv. 

The reason for choosing to link the Reynolds-stress and velocity so tightly is clear 
from the form of the Z-momentum equation (1) and the fact that this equation yields no 
direct information on the mean velocity above the canopy; the C-momentum equation 
states that u’ = const. above the canopy, and one may obtain the C-field above the 
canopy by an upward integration of the gradient &i/iiaz which appears in the above- 
canopy stress-equation. 
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3.2. BOUNDARY CONDITIONS 

At the top boundary, the normalized Reynolds stress takes the value - 1. At the lower 
boundary, as is conventional, a shallow equilibrium wall layer has been assumed, so that 
from the mean velocity up = i42) at the first grid point above ground zp, one may define 

0.4U(2) 
= ___ and m(l) = -u’,u,/\u,~, 

‘* W,/zd 

where z0 is a roughness length appropriate to the underlying surface (solutions are very 
insensitive to the choice of this roughness length). 

At both the upper boundary and at the ground, the vertical derivative of the velocity 
variance has been set to zero. An upper boundary condition on the mean velocity is not 
required. Clearly it would have been possible to improve agreement with observations 
by, for example, imposing observed values of the normal stresses at the top boundary 
(or at the ground). The approach taken here has been to avoid depending on knowledge 
one would not expect to have in any future application of this type of model. However, 
it must be admitted that the use of an optimized drag coefficient is a very important 
exception to this convention; one would not, in any application, have the luxury of being 
able to determine cd from the measured wind and stress profiles. 

3.3. GRID CHOICE 

All reported simulations were carried out with the stress levels (i.e., even velocity 
moments) chosen to lie at 

z/H = 0.1 [O.l] 0.3 [0.05] 1.1 [O.l] 2.0 [0.2] 3.2 [0.3] 3.5 [0.5] 6.0, 

where the number enclosed thus [ ] denotes the intervals used in progressing from the 
limits on either side. Velocity grid points were placed at the ground and midway between 
stress grid points. Fine resolution was found to be particularly important near the top 
of the canopy where gradients are streep and change rapidly. Solutions given are not 
claimed to be grid independent but it is expected that changes with further grid 
refinement would be small. 

3.4. NUMERICAL STABILITY 

If @’ denotes the ‘old’ estimate of 4 and q” the new, the customary ‘relaxation’ procedure 
is to define 

q = aq” + (1 - a)q” 

as the ‘relaxed’ new estimate (where a < 1). This procedure, which does not affect the 
final solution but only the rate of progress toward it, was found to be necessary to ensure 
numerical stability. 

3.5. CRITERION FOR CONVERGENCE 

Numerical integrations were terminated when the largest changes in ii, u) relative to 
the prior guess did not exceed O.O05u,,. This required of the order of 3 min com- 
putation time using the C language on an IBM PC. 
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During most of the hundreds of numerical integrations performed during this work, 
the author watched the sequence of estimates and the progress of the residuals in 
solution of the equation. A strong impression was formed that convergence towards a 
solution which agrees well with observations is more rapid and regular than progress 
towards a bad solution. This can be a useful indication that one is ‘flogging a dead horse’. 

4. Data 

One of the difficulties in evaluating canopy flow models is the scarcity of observations 
which are sufficiently complete. One would like a detailed descr&tion of the canopy -_ 
(area density versus height) and measured profiles of ii, u), u’*, u’~, w” (at least) 
within and well above the canopy. Furthermore, since the turbulent intensity is very high 
within a canopy, one must treat some of the available data-sets as suspect, owing to the 
special care needed to perform anemometry when the flow exhibits a huge range of 
angles of attack relative to the anemometer. 

Wilson et al. (1982) measured profiles of turbulence statistics within a mature corn 
canopy using specially-designed servo-controlled split-film heat-transfer anemometers. 
Their Table I shows that the instrument comparisons on 2 August, 1977 and 4 August, 
1977 indicate excellent consistency. The area density profile had been sampled on 
29 July, 1977, and on 2 August, 1977, 37 samples of plant height yielded heights of 
2.01 m to the top leaf, 2.25 m to the top of the tassels. It was decided to use the 

TABLE I 

Turbulence observations within a corn canopy, Elora, Ontario, Canada, 2 and 4 August, 1977 

0.87 0.78 0.62 1.85 1.60 1.29 1.11 
0.79 0.63 2.01 1.65 1.28 1.11 
0.96 0.66 2.12 1.70 1.34 1.09 
0.96 0.67 2.07 1.70 1.29 1.09 

0.81 0.63 0.47 1.57 1.39 1.40 
0.64 0.50 1.59 1.34 1.28 

0.75 0.31 

0.62 0.113 
0.126 

0.31 0.99 1.11 0.97 

0.180 0.52 0.69 0.82 
0.182 0.57 0.72 0.82 

0.50 0.049 0.126 0.43 0.60 0.69 
0.076 0.135 0.47 0.64 0.70 
0.039 0.108 0.34 0.58 0.73 
0.044 0.104 0.34 0.57 0.71 

0.44 0.053 0.077 0.24 0.50 0.54 
0.057 0.078 0.24 0.53 0.56 

1.09 
1.04 

0.86 

0.7 1 
0.73 

0.53 
0.55 
0.54 
0.55 

0.41 
0.43 

0.33 0.0094 0.047 0.14 0.45 0.49 0.29 
0.022 0.044 0.13 0.48 0.49 0.31 
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measurements of these two days rather than the complete data-set in order to avoid the 
complication of the change in canopy height which occurred over the entire period of 
the measurements. Table I presents the measured turbulence statistics for these two 
days. The upper anemometer height of 2.21 m has been defined to be the ‘canopy height’ 
(H = 2.21 m) since few tassles protruded above his level and one therefore expects little 
momentum flux divergence above this level. 

Averaging together all data obtained with both anemometers at z = 2.21 m (7 
half-hour comparisons), the canopy-top statistics were found to be: 

ii/U*H = 3.04 (0.10) ) au/u,, = 2.06 (0.08)) 

CJJU*~ = 1.65 (0.09)) aJ4,. = 1.13 (0.02) ) 

where the sample standard deviation is given in brackets. Table II gives the single-sided 
leaf area density measured in 7 layers, each 0.33 m in depth. The LA1 obtained by 
summation is 2.9. 

TABLE II 

Leaf area density profile corresponding to 
measurements of Table I 

Layer (m) a(z)b-‘1 

2.00-2.33 0.16 
1.67-2.00 2.22 
1.33-1.67 2.11 
1.00-1.33 1.66 
0.67-1.00 1.53 
0.33-0.67 0.71 
0.00-0.33 0.42 

By integrating the momentum equation (1) from z = 0 to z = H using the measured 
profiles of U, m and a(z) and assuming a constant drag coefficient and that 
m(O) = 0, it was deduced that cd = 0.30. Figure 2 shows the profile of u) obtained 
by integrating Equation (1) using cd = 0.30, and the observed Is(z), a(z). The agreement 
with the observations is not very good. Bearing in mind the sampling problem inherent 
in the determination of a(z), one should accept the likelihood that there will always be 
a degree of error in the conformity of observations with Equation (1). For present 
purposes, it was decided to eliminate this problem by using the measured U(z), m(z) 
to deduce 

C&l = - (f3m/dz)/u2 . 

This value of cdu was then used in the numerical model, so that the measured profile 
of u(z) was not needed. 

Model simulations have also been performed for the wind-tunnel canopy flow 
described by Raupach et al. (1986). The ‘tombstone canopy’ was an array of vertical 
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,I: 0.0 0.2 0.4 0.6 0.8 1.0 

7 Fig. 2. Comparison of observed profile of u’ w within a corn canopy with the profile obtained by 
integrating the momentum equation (I) with a constant drag coefficient and the observed profiles of leaf 

area density and mean velocity U(z). 

Z/H 

Fig. 3. Comparison of model prediction and observed mean wind profile within the corn canopy. 
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bars arranged in a regular diamond pattern. In the measurement section, the flow was 
in approximate streamwise equilibrium, and velocity statistics were measured using a 
specially-developed three-wire probe. The profiles which have been used here were 
evaluated from the measurements at x r 1.5 m. Specifically, the wind profile is the 
spatial average (9 measured with a sonic anemometer at x = 1.25 m (their 
Figure 3(c)), while zJ2 was obtained from the given profile at a central position in the 
diamond cell at x = 1.5 m. 

The canopy frontal area index was 0.23 which, given the canopy height H = 0.06 m, 
implies that the frontal area per unit volume was a = 3.83 m- ‘. 

Assuming (m), = 0 and applying the measured wind profile within the momentum 
equation (1) the author found that a value cd = 1.15 is necessary to predict (m), 
correctly. This is higher than the value of 0.8 quoted by Raupach et al. obtained by the 
same process ; the reason for this difference is unknown. In simulations here, cd = 1.15 
and aH = 0.23 (simulations with cd = 0.8 were distinctly inferior). 

Because the tombstone canopy flow is not strictly one-dimensional (see, for example, 
the momentum flux gradient above the canopy), simulations were performed with the 
top grid point at z/H = 2. 

0.8 

0.6 

0 Observations 

- Model 

0.0 
00 0.2 0.4 0.6 08 1.0 

Fig. 4. Comparison of modelled and observed profiles of the shear stress u’ w’ within the corn 
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5. Results 

5.1. CORN CANOPY 

Figure 3 compares the prediction of the numerical model with the Elora observations 
within a corn canopy. Unfortunately, above canopy measurements were not carried out; 
according to the simulation, the wind profile becomes logarithmic with respect to z a 
very short distance above the canopy (z/H 2 1.4) with slope @/u,)/alnz = l/k, and 
with effective roughness length z,, z 0.18H. This is a consequence of the fact that the 
length scale used in the parameterization of viscous dissipation (which in turn affects the 
effective eddy viscosity above the canopy) was z rather than z - d (where d is a 
displacement height). With hindsight, a displacement length should have been included. 
In any case, the within-canopy profile is predicted accurately. The dashed line in 
Figure 3 shows the prediction with c, = CSO, which is certainly inferior. Figure 4 shows 
that the predicted profile of momentum flux is in good agreement with observation; this 
need hardly be stated - an accurate wind profile in conjunction with the ‘correct’ cdu 
yields an accurate momentum flux profile automatically (i.e., the two are linked). 

Figures 5 and 6 compare observed and predicted profiles of OJU * H and a,,,/~ *H. The 
modification of c, has a very large effect on the velocity fluctuation variances deep in 
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0. 0 

, I I I 
0. 5 1.0 1.5 2.0 
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Fig. 5. Comparison of modelled and observed profiles of the standard deviation of the streamwise velocity 
fluctuation q, within and above the corn canopy. 
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Fig. 6. Comparison of modelled and observed profiles of the standard deviation of the vertical velocity o,+ 
within and above the corn canopy. 

the canopy, in contrast to its modest effect on the wind and momentum-flux profiles. 
Noting that there is no empirical source/sink term included in the u) equation and 
the weak foundation for the chosen empirical variance-sinks (especially deep in the 
canopy), one wonders if the need for a modification in c, to yield more transport of 
variance into the lower canopy has arisen because the destruction rate has been 
overestimated; alternatively, the parameterisation of turbulent transport may be fun- 
damentally inadequate. 

The computed components of the SKE budget equation are in qualitative agreement 
with estimates derived from observations by Shaw and Seginer (1985). Viscous dissi- 
pation of SKE was calculated to be of negligible importance within the canopy. The 
most notable difference is that according to these calculations the region z FZ H (actually, 
0.95 s z/H g 1.2) is an exporter of SKE (by turbulent transport) to other regions, owing 
to an excess of shear production (I ?? 1 still large, &/r3z very large, but small area 
density at large z/H so that form drag is not yet dominant). This contrasts with the 
indication of Shaw and Seginer, which suggests that at z FZ H, SKE is imported (gamed) 
by turbulent transport (as at lower levels). However, Shaw and Seginer have interpolated 
between measurements at z/H - 0.9 and z/H - 1.3 and may thereby have missed a 
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reversal in the sign of turbulent transport just below z = H. It is worth noting that 
predictions of Wilson and Shaw (1977) and observations of Raupach et al. (1986) 
indicate the region near z = H to be an exporter of total TKE. 

5.2. TOMBSTONE CANOPY 

Figure 7 shows that the numerical model yields a good prediction of the measured 
horizontal-average wind profile (and, though not shown, a correspondingly good 
prediction of the momentum flux). Raupach et al. observed quite large spatial variations 
in the single-point mean velocity within measured cells. The simulations were initially 

L 
(mm) 

cd=2.3 

I I I I I 

1.0 2.0 3.0 4.0 5.0 0 

ii(ms-t) 

Observations 

Fig. 7. Comparison of modelled and observed wind profile U(z) within and above the wind tunnel canopy. 
The dashed curves give the prediction with increased and decreased values for the drag coefficient. 
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compared with the single-point profile at cell centre at x = 2.5 m; the agreement was 
less pleasing. It is of interest (though uncertain significance) that the numerical profile 
is much closer to the spatially averaged wind profile than the single-point profile. 

Also shown on Figure 7 are the profiles generated with cd = (0.5,2.0) x 1.15. These 
are included to give some idea of the consequences of an imprecise knowledge of the 
true drag coefficient (which in most applications would be unknown). 

Figure 8 shows the predicted and observed profiles of a, for the tombstone canopy. 
The modification of c, has almost no impact on the simulation of the tombstone canopy, 
since the frontal area index of 0.23 is quite small (relative to the LA1 2.9 of the corn 
canopy). The rather poor model prediction for a, deep in the canopy is reminiscent of 
the poor predictions for the corn canopy when the modification to c, is not used 
(Figure 5). This probably means that the parameterisation of turbulent transport used 
here is inadequate. 
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Fig. 8. Comparison of modelled and observed profiles of the standard deviation of the streamwise velocity 
fluctuation CT,, within and above the wind tunnel canopy. 
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6. Discussion 

In evaluating the usefulness of this or any other canopy flow model, one must give some 
thought to the level of accuracy which it is meaningful and realistic to strive for. In at 
least some canopies there are large variations in mean windspeed in the horizontal plane 
(due to sheltering by individual plants). Baldocchi et al. (1983) measured differences of 
the order of 50% between windspeeds within and between rows of a soybean canopy. 
The spatial variations in the tombstone canopy have already been mentioned; these 
amounted to of the order of 25% variation. 

It therefore seems likely that models which yield only a single estimate of windspeed 
for a given height (whether or not this single estimate is a point value or a horizontal 
average) will be of no use in any application which requires that windspeed be estimated 
to an accuracy of better than about 25 % . 

One of the most likely applications of a canopy flow model is as a component of a 
canopy evapotranspiration and/or crop growth model (see, for example, Hwang and 
Shaw (1985) who used a second-order closure model, including vapor and heat 
transport, to examine the effectiveness of practices which aim to conserve water by 
reducing soil evaporation). In this context, the impact of the wind and turbulence 
estimates is primarily (or most strongly) upon the leaf boundary-layer resistances. 
Experimental evidence (Pearman et al., 1972) is that leaf boundary-layer resistance 
scales with fi, where I/is the instantaneous wind speed, so that percentage errors in 
transfer re&ances are half the percentage errors in the wind estimates. Furthermore, 
even if ,,,@ was predicted perfectly (or measured), actual values of the transfer 
coefficient may differ by as much as + 50% relative to the estimate obtained from the 
correlation employed. That is to say, even perfect wind estimates would lead to 
imperfect transfer coefficient estimates. In the cases of vapor transport from a dry 
canopy or CO, uptake, this gloomy situation is brightened somewhat by the fact that 
the leaf boundary-layer resistances will usually be much smaller than the stomatal 
resistance. 

In view of the above comments, one might say that if we can predict the windspeed 
and turbulence to within + 50%, we are doing as well as is realistic (from the point of 
view of within-canopy variations) and useful for the type of applications envisaged. In 
that case, the present generation of canopy flow models (and in fact much cruder 
models) should suffice for practical purposes, and if they do not, it is unlikely that future 
models will. 

Note that it has here been pre-supposed that the drag coefficient cd is independent 
of windspeed; within this framework, it is a foregone conclusion that one will predict, 
for given a(z), a ‘universal’ profile of ii/u,, - - or u/uN, having no sensitivity to the actual 

-- windspeed. The Elora observations support this framework (unique profile of u/u,, or 
equivalently z4iw cc u&), but other experiments have yielded neutral wind-profiles which 
are not invariant and do depend on absolute windspeed. The simplest interpretation of 
this is probably to allow the drag coefficient to depend upon the Reynolds number iid/ v, 
where U is the local windspeed and d the leaf characteristic dimension (see Raupach and 



A SECOND-ORDER CLOSURE MODEL FOR FLOW THROUGH VEGETATION 391 

Thorn, 198 1). One would then have to introduce a further non-dimensional controlling 
input, say ii&4 *H, or, more conveniently, iLroP/u* (i.e., conditions on both U and u * 
at the top boundary). 

While on the topic of the drag coefficient, it is worth noting that, to date, canopy flow 
models have achieved good agreement with observation partly because the drag 
coefficient has been available as a freely assignable constant or has been deduced 
directly from the measured wind, stress, and area density profiles. This is unsatisfactory 
since in any application, it will be necessary to provide an independent estimate of the 
drag coefficient. This is not an easy task, even given the drag coefficient for a plant part 
in a uniform flow, due to the mutual interaction of the plant elements which reduces the 
effective drag coefficient. 

7. Conclusion 

This second-order closure scheme yields reasonably good predictions of the wind 
statistics in two rather different canopies. However, it is not claimed that this closure 
scheme has general validity, and a search for physically-sound closure approximations 
for canopy flow must be encouraged. 

The main distinction between this and earlier models is that a dual frequency band 
turbulent kinetic energy balance has been employed, and the ratio k/c of the low- 
frequency band TKE to its dissipation rate has served as the required turbulence 
time-scale. While this partly removes the need to arbitrarily specify a turbulence length 
scale (a length scale is still imposed for the viscous dissipation term), it must be admitted 
that there is a counterbalancing empiricism involved in formulating the two-band model. 
Nevertheless, it does seem worthwhile to aim to model the additional turbulent kinetic 
energy transformation pathways which occur in canopy flow because their importance, 
at least in dense canopies, has been clearly demonstrated. 
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