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ABSTRACT

In reference to previously observed concentrations of methane released from a source enclosed by a

windbreak, this paper examines a refined ‘‘inverse dispersion’’ approach for estimating the rate of emission Q

from a small ground-level source, when the surface-layer winds near that source are highly disturbed. The

inverse dispersion method under investigation is based on simulation of turbulent trajectories between

sources and detectors, using a Lagrangian stochastic (LS) model. At issue is whether it is advantageous to

recognize the flow as being disturbed and use a computed approximation to that disturbed flow to drive a fully

three-dimensional LS model (3D-LS), or whether it suffices to ignore flow disturbance and adopt an LS model

attuned to the horizontally homogeneous upwind flow (MO-LS, as Monin–Obukhov similarity theory de-

scribes the vertical inhomogeneity). It is demonstrated that both approaches estimate the source strength to

within a factor of 2 of the true value, irrespectively of the location of the concentration measurement, and

moreover that both approaches estimate the source strength correctly (to within the experimental un-

certainty), when based on concentrations measured far away from the immediate influence of obstacles in the

flow. However, if the concentration detector is positioned close to the flow-disturbing obstacles, then inverse

dispersion based on 3D-LS provides a better estimate of source strength than does MO-LS.

1. Introduction

Consider the challenge of measuring the mean rate Q

(kg m22 s21) of gas emission to the atmosphere from a

localized and uniform near-ground source having a known

perimeter—as an example, perhaps one’s interest might

be the rate of ammonia volatilization from a small, ir-

regularly shaped plot of soil to which urea fertilizer had

been applied, a plot surrounded by untreated soil in an

otherwise identical condition. The size of the source is

hypothetically too small for practical application of the

eddy covariance or flux-gradient approaches. In this sit-

uation, presupposing the existence of a suitable model of

wind transport, one might invoke the ‘‘inverse dispersion’’

approach and, instead of directly measuring Q, measure

the mean concentration excess C (relative to background)

at some convenient downwind point, along with suffi-

cient information to ‘‘drive’’ a meteorological model with

whose aid the value of Q necessary to explain measured

C is diagnosed.

The idea of inverse dispersion—that is, of inverting the

relationship C 5 f(Qju) to deduce source strength from

known concentration as Q 5 f21(Cju)—is both obvious

and venerable (note: here ju signifies that one is given

all needed statistics of the turbulent wind field). Flesch

et al. (1995) introduced a particularly flexible variant

based on the computation of an ensemble of backward-

in-time trajectories from detector to source to establish

the needed theoretical C–Q relationship (the backward

Lagrangian stochastic, or bLS, method). Subsequently,

Flesch et al. (2004) demonstrated the bLS method by way

of tracer gas trials with a 6 m 3 6 m surface area source in

horizontally homogeneous flow designed to establish the
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level of accuracy that may be hoped for in the best of

circumstances1—a level of accuracy that, incidentally,

concurs with the findings of Hanna et al. (1990), who

inferred the known source strength of the Project Prairie

Grass trials using several dispersion models. The emer-

gence of line-averaging gas detectors having proven op-

portune for the application of this technique (largely

because modeling crosswind spread is more difficult than

vertical spread), bLS has now been applied by the present

authors and colleagues to estimate gas emissions from

confined animal operations, such as hog farms (Flesch

et al. 2005a), feedlots (Flesch et al. 2007), and dairies

(Flesch et al. 2009). Other applications have been re-

ported by Laubach et al. (2008), Loh et al. (2009), and

McGinn et al. (2009).

In the above-cited work the needed theoretical C–Q

relationship was provided by a backward Lagrangian sto-

chastic model that represented the wind as being hori-

zontally homogeneous, and described by Monin–Obukhov

profiles matched to whatever wind statistics had been

measured, usually by a sonic anemometer standing in a

region of relatively undisturbed flow. For this reason we

here relabel the bLS technique used by previous authors

as MO-bLS. Now at some of these sites where MO-bLS

has been employed, obstacles such as barns, lagoons, or

fences undoubtedly disturbed the flow. An earlier inves-

tigation (Flesch et al. 2005b) of MO-bLS in intentionally

disturbed winds suggested that, provided the concen-

tration detector was sufficiently remote from the source

to ensure that a good fraction of the path from source

to detector lay in undisturbed flow, the technique could

be applied with adequate accuracy. However, the sub-

jectivity entailed in judging whether a site and instrument

setup is adequate exposes MO-bLS to the accusation of

failing to represent flow complexity, and criteria addressing

the robustness of MO-bLS at imperfect sites are needed.

That, however, is not our main objective here. Instead

we examine the advantages and disadvantages of adopt-

ing as basis for inverse dispersion a Lagrangian model

that recognizes and accommodates the flow disturbance,

to the extent that it can be approximated from measure-

ments or a computer simulation: we shall label this ap-

proach 3D-LS, and more specifically 3D-fLS or 3D-bLS

accordingly as trajectories are computed forward or back-

ward in time. There is no difficulty in principle to adopt

3D-LS for inverse dispersion; however, it is well known

that Reynolds-averaged Navier–Stokes (RANS) wind

models are imperfect (e.g., Pope 2000; Leschziner 2000)

and so it is an open question as to whether, in practice,

source strength inference on the basis of 3D-LS—that is,

symbolically Q 5 f21(Cju3D)—could be meaningfully

more accurate than on the basis of MO-LS. The purpose

of this paper, then, is to investigate whether there is

a gain in accuracy from adopting 3D-LS over MO-LS for

inverse dispersion calculations, in reference to a partic-

ular tracer gas dispersion trial that involved a small area

source enclosed by a porous shelter fence. The 3D wind

field permitting us to address this question stems from

earlier simulations by Bourdin and Wilson (2008), using

the code Fluent with a k–� turbulence closure.

2. The Ellerslie Tracer Experiment

Figure 1 is a schematic of the Ellerslie tracer gas trials.

A porous plastic windbreak fence, of height h 5 1.25 m

and porosity 45% and having resistance coefficient2 kr 5

2.4, was erected on a uniform plain to shelter a square

plot of side length D 5 20 m. Centered within this plot

a PVC manifold (see Fig. 2 of Flesch et al. 2005b) served

as a controlled source of tracer methane, released from

36 outlets arranged uniformly over an area of 6 m 3 6 m.

A mast standing 10.4h west and 0.8h south of the

southwest corner of the fence carried cup anemometers

at heights z 5 (0.65, 1.12, 2.12, 3.6, 6.05) m and a three-

dimensional sonic anemometer, this last at the reference

height, z 5 zR 5 2.2 m. These instruments established

the state of the surface layer upwind from the plot (i.e.,

friction velocity u
*
, Obukhov length L, mean wind di-

rection b, and roughness length z0). Identical cup ane-

mometers standing at z 5 h/2 within the plot established

the complex pattern of mean wind speed [as reported by

Wilson and Flesch (2003), see especially their Fig. 14];

however, anemometers were not operated in the down-

stream wake of the leeward shelter fence(s). We shall use

the convention that mean wind direction b is measured

relative to the orientation of the upwind fence; thus b 5

458 is corner flow, while b 5 08 is an approach flow normal

to the upwind side of the plot. The coordinates will be

specified relative to an origin lying at the center of the plot.

Throughout the paper, u
*

is to be interpreted as the fric-

tion velocity in the undisturbed region of the flow.

During the trace gas dispersion trials pairs of open

path laser gas detectors (path height zL 5 1 m) were op-

erated near the source, either within or downstream from

1 Broadly interpreted, the findings of Flesch et al. (2004) indicate

that even at an ideal site the error in bLS estimates of source

strength for an individual run can be as large as of order 650%–

100%. However, when estimates from numerous runs are com-

pounded, the error converges to a smaller circa 5%.

2 In our definition the pressure drop across the material, if

blocking a stream of density r and uniform normal velocity u, is

Dp 5 krru2. Please note that Bourdin and Wilson (2008) used the

other common convention in which the pressure drop is (½)krru2;

thus, in their terms kr 5 4.8.
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the sheltered plot. This paper focuses on inverse dis-

persion relative to four laser paths (Fig. 1), three of

which (A, B, D) were parallel with different sides of the

plot. Configuration A represents a laser with pathlength

18.3 m traversing the square plot and running over the

edge of the gas source. Configuration B is a longer path

of 52.3 m, running just outside the shelter plot. Config-

uration C with pathlength 93.4 m is an oblique path (and

is treated here only in backward simulations). Configu-

ration D is a much more distant laser, with pathlength

138.6 m. The laser detectors provided 15-min mean values

of line-averaged concentration, while a rotameter moni-

toring the flow rate from the gas cylinder supplying the

source gave the true source strength Q, to within an

uncertainty of about 65%. For further details, please

refer to Flesch et al. (2004, 2005b).

a. Selection and normalization of experimental data

Numerous 15-min runs were made over several days,

providing paired (C, Q) data for each of the above con-

figurations over a range of conditions as regards strat-

ification (Obukhov length L), wind speed, and wind

direction (b). Now if S represents the mean horizontal

wind speed at z 5 2.2 m on the reference mast in the

undisturbed flow, and if we treat roughness length z0 as

invariant (i.e., common to all runs), then according to the

extended Monin–Obukhov similarity theory (e.g., Wilson

2008) the statistical state of the upwind surface layer may

be characterized by a quartet of external (or governing)

variables, namely (S, b, L, d), where d is the boundary

layer depth. (Note: here we use the reference wind speed

S in lieu of the friction velocity u
*
, which is permissible

because the two are in 1:1 relationship for given z0.)

For the present study we selected a subset of 15 runs

that occurred during effectively neutral stratification

(jLj $ 150 m), and for each of which the mean wind

direction was almost parallel to the diagonal across the

plot (jb 2 458j # 58). This selection fixes (i.e., holds

constant) two of the four external variables. We did not

measure the boundary layer depth, which therefore rep-

resents an unknown and uncontrolled factor. However,

velocity statistics in a neutrally stratified surface layer

are relatively insensitive to d, and so we exploited the

expected (approximate) invariance of the dimensionless

measured product SC/Q so as to be able to combine

together runs that took place with differing mean wind

speed to form the average SC/Q for any given configu-

ration. The influence, if any, of varying d should have

been expressed primarily by variation of the normalized

horizontal velocity standard deviations su,y/u
*

across the

15 selected runs. Our use of concentration line averages

across the plume should to some extent have suppressed

the influence of such variations on the dimensionless

product SC/Q.

Table 1 gives the available individual values of SC/Q,

along with the composite value, for each configuration.

By comparing a modeled value (SC/Q)* with that ob-

served (in the mean) for a given configuration, we can

extract the ratio

QLS

Q
5

SC/Q

(SC/Q)*
(1)

FIG. 1. Configuration of Ellerslie tracer gas experiments: windbreak (larger square; 20-m

sidelength), ground-level trace gas source (smaller square; 6-m sidelength), and laser gas de-

tectors A, B, C, D (lines) with pathlengths (18.3, 52.3, 93.4, 138.6) m, respectively. Mean wind

direction is aligned with the diagonal. The reference mast stood more than 10h westward (up-

wind) from the southwest (upwind) corner of the windbreak. The inset table gives coordinates

(in meters, relative to plot center) of the two ends of the laser detector, for each configuration.
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of inferred-to-true source strength (note: each of the

detector configurations was used independently to de-

duce Q). Similarly in the practical application of the

technique, the desired value of the unknown source

strength would be obtained as

QLS 5
SC

(SC/Q)*
. (2)

b. Micrometeorological constants

Simulations to establish the normalized concentration

(SC/Q)* may be performed with any specification of the

overall wind speed (as characterized by S or equiva-

lently by the friction velocity u
*
), because in the high-

Reynolds-number flows characterizing the atmospheric

boundary layer, the computed SC/Q product is insensi-

tive to its choice (and there is no explicit role for the

boundary layer depth d in a Fluent–RANS simulation of

the surface layer). However, it is desirable to have the

simulations reproduce particular values of certain key

dimensionless variables observed by the sonic anemom-

eter (at reference height z 5 zR 5 2.2 m) in the undis-

turbed flow region: namely, the ratio S/u
*

of mean

horizontal wind speed to friction velocity, and the ratios

cu,y,w 5 su,y,w/u
*

of velocity standard deviation to fric-

tion velocity, ratios which together fix the (normalized)

turbulent kinetic energy, as E/u
*
2 [ (cu

2 1 cy
2 1 cw

2)/2. To

accomplish this attuning of the computed flow to the

observations, our starting point was to choose representa-

tive values for the sonic anemometer observations during

neutral conditions. Accordingly we have set cu,y,w 5 (2.8,

2.4, 1.1), which implies (E/u
*
2)exp 5 7.41, and assumed

for S/u
*

the value [ky
21 ln(zR/z0)] that is implied by the

roughness length as cited by Wilson and Flesch (2003):

namely, z0
exp 5 0.015 m (here ky is the von Kármán

TABLE 1. Measured SC/Q (normalized concentration rise above background) for each configuration (S is the mean horizontal wind

speed as measured by a sonic anemometer in the approach flow at the reference height zR 5 2.2 m). Identifier ID, day, and time cross-

reference each run to the fuller description given by Flesch et al. (2005b). Runs have been selected for alignment of the mean wind

direction (b) along the diagonal across the plot and for effectively neutral stratification so that, in principle, for each detector SC/Q should

be invariant across all runs within a given configuration (A, B, C, or D). For each configuration the average SC/Q is given (in boldface).

Alongside, the first number in parentheses is the standard error (se) over the M estimates in the configuration (i.e., standard deviation

divided by
ffiffiffiffiffi
M
p

), while the second number is the standard error expressed as percentage of the mean. The latter does not embrace the

uncertainty stemming from the gas source strength, which contributes a further nominal 65% uncertainty in experimental SC/Q.

Configuration ID Day Time S (m s21) b (o) u
*

(m s21) L (m) SC/Q

A F2–5 148 1315 12.85 41 0.88 2198 0.017 76

A F2–5 148 1330 13.17 40 0.88 2197 0.017 28

A F2–5 148 1345 12.88 45 0.88 2196 0.019 83

A F2–5 148 1500 12.45 41 0.85 2207 0.021 00

A F5–5 152 1515 9.27 42 0.69 2117 0.025 11

A F5–5 152 1530 8.88 44 0.62 2128 0.025 55

A F5–5 152 1600 8.70 41 0.64 2190 0.022 45

A F5–5 152 1615 8.77 47 0.66 2206 0.020 65

A F5–5 152 1630 9.24 49 0.69 2235 0.026 63

A F5–5 152 1645 9.60 47 0.73 2232 0.018 68

Avg (se) 0.021 49 (1.1 3 1023, 5%)

B F2–6 148 1315 12.85 41 0.88 2198 0.025 89

B F2–6 148 1330 13.17 40 0.88 2197 0.025 76

B F2–6 148 1345 12.88 45 0.88 2196 0.026 12

B F2–6 148 1500 12.45 41 0.85 2207 0.023 85

Avg (se) 0.025 40 (5.2 3 1024, 2%)

C F5–6 152 1515 9.27 42 0.69 2117 0.007 48

C F5–6 152 1530 8.88 44 0.62 2128 0.007 17

C F5–6 152 1600 8.70 41 0.64 2190 0.006 87

C F5–6 152 1615 8.77 47 0.66 2206 0.007 44

C F5–6 152 1630 9.24 49 0.69 2235 0.007 27

C F5–6 152 1645 9.60 47 0.73 2232 0.007 40

Avg (se) 0.007 27 (9.3 3 1025, 2%)

D F6–6 156 1215 5.94 44 0.45 2134 0.001 81

D F6–6 156 1230 5.46 42 0.42 2103 0.001 40

D F6–6 156 1400 5.40 43 0.42 2100 0.002 11

D F6–6 156 1415 6.22 43 0.48 2118 0.002 14

D F6–6 156 1430 6.66 43 0.47 2151 0.002 22

Avg (se) 0.001 94 (1.5 3 1024, 8%)
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constant, whose value we assume is ky 5 0.4; we are

using ‘‘exp’’ to indicate experimental values of key mi-

crometeorological variables). Note that with cw 5 1.1 we

have a smaller value of sw/u
*

than is often cited, but we

have no reason to disbelieve it (see Wilson 2008).

3. The Lagrangian stochastic model

Trajectories were computed using the Thomson (1987)

well-mixed three-dimensional model for Gaussian in-

homogeneous turbulence. The general setup of the al-

gorithm follows that detailed by Wilson et al. (2009), who

had applied the Thomson model to compute trajectories

in urban flow. The present code is simpler in that it need

not deal with excluded volumes (buildings), but other-

wise the prescription given by Wilson et al. covers the

present simulations and we need not elaborate. The flow

properties required by the trajectory algorithm as inputs

are the mean velocity vector u
i
, the Reynolds stress

tensor Rij [ u9i u9j , and the turbulent kinetic energy dis-

sipation rate �. Please note that we reserve symbols Ui 5

(U, V, W) for the components of the Lagrangian ve-

locity fluctuation relative to the local Eulerian mean

velocity ui 5 (u, y, w), while u9i is the vector of Eulerian

velocity fluctuations.

a. Specification of the Kolmogorov constant

Thomson’s model requires a specification of a

Kolmogorov constant C0, this being the only parameter

that can be regarded as flexible. Wilson et al. (2009)

discuss this choice at length, noting the choice amounts

(implicitly) to a tuning of the Lagrangian model so as

to implement (again, implicitly) a target value for the

turbulent Schmidt number (Sc). For the reasons given

in that paper, here we assumed Sc 5 0.63 and specified

the Kolmogorov constant as

C
0

5 2S
c
(c4

w 1 1), (3)

where cw is the chosen value for sw/u
*

in the approach

flow. As noted above we set cw 5 1.1 (on the basis of

observations from the sonic anemometer in the upstream

flow region), thus for the Lagrangian simulations of this

paper C0 5 3.10.

b. Time scale and time step

Given a specified field of velocity statistics and a pre-

scribed C0, Thomson’s LS model produces an ensemble

of trajectories to which one might like to impute a ve-

locity decorrelation time scale—but one does not ex-

plicitly prescribe that property, in the sense of imposing

it as an input or ‘‘driving’’ property. Like Wilson et al.

(2009) we regard the derived (or secondary) quantity

t 5 2s2
w(C

0
�)�1 (4)

as being an effective time scale (thus the label, t), and

assume it is of the same order of magnitude as the ve-

locity autocorrelation. We required that the time step Dt

satisfy Dt � t. We also required that the time step be

small with respect to an inhomogeneity time scale

t
h

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 1 Dy2 1 Dz2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(U 1 u)2

1 (V 1 y)2
1 (W 1 w)2

q , (5)

which characterizes particle transit time across the grid

cell (of dimension Dx 3 Dy 3 Dz). Therefore we specified

Dt 5 m min(t, t
h
), (m � 1). (6)

How small does m need to be? The physical source in

the Ellerslie tracer experiments having been at ground

level, backward simulations reported in this work are

intended specifically to compute particle residence time

in a thin ground-based slab over the (physical) source.

Earlier experience (Flesch et al. 1995; Wilson 2007; Cai

et al. 2008) suggests that when estimating the C/Q ratio

very near the reflecting surface (as opposed to releasing

particles from a ground-level source for a forward sim-

ulation to detectors away from the ground) it is neces-

sary that the time step be very small; for example, Flesch

et al. (1995) set Dt/t 5 0.025. The present simulations

used m 5 0.01, but differ negligibly from those with

a coarser time step (m 5 0.05).

c. Forward and backward simulations performed

If the C–Q relationship (SC/Q)* is to be determined

by reference to an ensemble of random trajectories be-

tween source and detector, that ensemble may (accord-

ing to the user’s preference) entail either forward- or

backward-in-time trajectories. In the case that the source

has finite volume (or area), backward trajectories are very

convenient (for the reasons given by Flesch et al. 1995).

However, an equally common case is the continuous

point source, and unless one wishes to approximate the

point with a finite volume, this necessitates the forward

approach. In short, each approach (i.e., forward, back-

ward) is apt for a certain circumstance, and so both are

necessary. However, our reason for examining both ap-

proaches here is more fundamental than the mere utility

of each, in that we wish to demonstrate (or confirm) their

equivalence. That point is less central to our paper than

the key question of the relative accuracies of 3D-LS and

MO-LS for inverse dispersion in a disturbed flow, and so

it is relegated to the appendix.
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d. Configuration of sources and detectors

Information on mean concentration is most easily

extracted from an ensemble of trajectories by computing

the mean particle residence time within a finite volume

detector, and it is important in the present context to

carefully prescribe its dimensions. Except for those sim-

ulations described in the appendix (simulations which, as

explained above, were intended to examine consistency

of forward and backward treatments) the backward sim-

ulations treated the lasers as line sources (the importance

of this is discussed in the appendix). Bearing in mind

the likelihood of strong vertical concentration gradients

near ground over the (physical) source, it was important

that the backward residence time detector be shallow,

and be centered near z 5 z0. This was achieved by using

the touchdown counter method; namely, for each set

(or subensemble) of computed paths the C/Q ratio was

computed as

C

Q
5

1

N
P

�
k

2

jw
0k
j , (7)

where w0k is the vertical velocity upon the kth particle

reflection off ground (z 5 z0) within the perimeter of the

source, and NP is the number of backward paths com-

puted in each of N 5 19 subensembles. This estimator is

equivalent to computing mean particle residence time in

a layer of arbitrarily small depth covering the source.

[Regarding the index k, please note that any one particle

may reflect off ground many times, and that every such

reflection occurring within the boundary of the source

contributes to the summation in Eq. (7).]

e. Initial velocity, surface reflection, and velocity limit

For a particle about to be released within the grid cell

indexed (I, J, K) the velocity fluctuation components

were initialized as

W 5 s
w

r
w

, (8)

U 5 s
u
(a

uw
r

w
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

uw

q
r

u
), and (9)

V 5 s
y
(a

yw
r

w
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

yw

q
r

y
), (10)

where the ri are independent standardized Gaussian

random numbers, a
uw

5 u9w9/(s
u
s

w
)(etc.) are the ve-

locity correlations, and all velocity statistics were given

the values pertaining to the node in the release cell. If

a particle’s displacement during t n / t n11 (5t n 1 dt)

took it below the level z0, that is, the provisional particle

height Z*(n 1 1) at time n 1 1 lay below the roughness

height, it was subjected to perfect reflection:

Z(n 1 1) 5 2z
0
� Z*(n 1 1), (11)

W(n 1 1) 5 �W*(n 1 1), (12)

U(n 1 1) 5 �U*(n 1 1), and (13)

V(n 1 1) 5 �V*(n 1 1). (14)

Thus all components of the Lagrangian velocity fluctu-

ation were reversed upon reflection, as is required to

preserve the velocity covariance.

Yee and Wilson (2007) noted that, when driven by a

disturbed flow field, the present LS algorithm [originating

with Thomson (1987)] may generate excessively large

velocities. Like Wilson et al. (2009), we imposed a limit

(U
i

# 6s
ui

) on the permitted magnitude of the La-

grangian velocity fluctuations Ui; if this limit was ex-

ceeded by any component, all velocity fluctuations were

reset by making a random choice from the local Eulerian

velocity distribution. In simulations treating the flow as

horizontally uniform, such rogue velocities, if they oc-

curred at all, occurred but once or twice. As for rogue

velocities in the disturbed flow, in a particular forward

simulation of 19 3 16 000 forward paths with m 5 0.01, the

Gaussian random number generator was sampled more

than 3 3 109 times to compute the vertical velocity com-

ponent (3 times that figure in total), while velocity fluc-

tuations exceeding the 6s level occurred only 67 times.

4. The discretized (gridded) flow field

This paper will report LS-based inverse dispersion

inferences of source strength based comparatively on

horizontally uniform winds (MO-LS), or based on a

computed field representing the (actually) disturbed wind

(3D-LS). But irrespectively of whether it was treated as

horizontally-homogeneous or otherwise, the flow field

driving the LS model was represented on a stretched,

three-dimensional Cartesian grid3 covering a very large

domain with sidelengths (X, Y, Z) 5 (96, 96, 41)h, cen-

tered on the middle of the plot. Within this domain, the

flow was stored at 123 3 123 3 34 5 514 386 nodes. Thus

3 The flow fields had been computed by Bourdin and Wilson

(2008) using a collocated ‘‘O-topology grid,’’ with 454 272 nodes.

Full details are given by Bourdin and Wilson (their section 4.1), and

of most relevance here, the volume within the windbreak was

uniformly discretized into 10 cells along its h 5 1.25 m height and

80 cells along its D 5 20 m sidelength, while outside that core re-

gion a stretching ratio of 1.2 was applied (from the interior toward

the exterior of the domain). The computed wind field was in-

terpolated from Fluent’s grid onto the Cartesian mesh used for the

trajectory simulation; within the confines of the windbreak the

mesh intervals were Dx/h [ Dy/h 5 0.2, Dz/h 5 0.1.
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the flow field was discretized, which usually is not the

case in the context of Lagrangian stochastic models.

The implications of this are subtle, and not entirely

clear. The grid length near ground (Dz 5 h/10 5 0.125 m)

vastly exceeded the roughness length (z0 5 0.015 m) and

so, with Eq. (6) ensuring that (with m � 1) many steps

are required to move from one cell to another, flow sta-

tistics (sampled by the traveling particle) are almost al-

ways invariant from one step to the next (note: in these

simulations we did not interpolate velocity statistics from

the nearest nodes to the particle position). This should

mitigate to some extent the (already small) Dt bias error

of the trajectory model (Wilson and Flesch 1993), and

possibly also mitigate any loss of accuracy because of the

imposition of perfect reflection: because flow statistics are

height-invariant across the lowest cell and thus local ho-

mogeneity applies.

a. Quality of the computed flow field

The realizable k–� closure (rke) used by Bourdin and

Wilson (2008) is one of the many variants of two-equation

closure, wherein closure is attained by introducing an

eddy viscosity based on
ffiffiffiffi
E
p

as velocity scale and E/�

as time scale (generally the constants of proportionality

are constrained to reproduce the known eddy viscosity

kyu
*
z of a neutral wall shear layer). Many authors have

written concerning the virtues and deficiencies of this

class of closure, and it will suffice for our purposes to

appeal to surveys. Leschziner (2000) notes that k–� clo-

sures ‘‘often perform poorly in high curvature, separa-

tion, recirculation, impingement and swirl.’’ Similarly Pope

(2000), surveying the accuracy of two-equation turbu-

lence closures, notes that the k–� closure may perform

poorly in three-dimensional flows and/or in strong pres-

sure gradients. The windbreak flow considered here is

three-dimensional and involves strong pressure gradients

(Wilson 1997) and associated streamline curvature (Plate

1971). The paired vortices induced in corner flow (ob-

served by Richards 1986, using smoke and tufts) suggest

‘‘swirl.’’ Thus it may be unrealistic to consider this flow

as being amenable to highly accurate simulation by the

RANS class of turbulence closure.

Nonetheless Fig. 2, reproduced from Bourdin and

Wilson (2008) and giving the computed mean velocity

on a transect along the diagonal at z/h 5 ½ in compari-

son with observations, indicates the simulated flow field

is rather realistic in terms of capturing the amplitude

of the spatial variation in mean wind speed. A cursory

examination of other model transects of wind speed did

not reveal any objectionable features, and the overall

pattern (see Bourdin and Wilson 2008, Fig. 15) strongly

resembles that observed (Wilson and Flesch 2003, Fig. 14).

Figure 3 bears on the quality of the computed turbulence

statistics, and again, is satisfactory at the qualitative level.

Based on what is known of turbulence in the wake of

windbreaks (e.g., Raine and Stevenson 1977), the com-

puted pattern of turbulent kinetic energy (Fig. 4) also

appears to be satisfactory (however no measurements

were made in the downstream region of the present

flow). It would be surprising, however, if the turbulence

statistics provided by the simulation were true at every

point in the flow domain (even at the 10%–20% level of

accuracy), witness Wilson’s (2004) study of windbreak

simulations, or that of Santiago et al. (2007) who com-

pared the performance of three variants of k–� closure in

Fluent simulations of windbreak flow and noted ‘‘per-

formance of any of these models against the wind tunnel

data is not particularly good.’’

Lest the tone of the preceding paragraphs seems un-

duly cautious or even pessimistic, we close this section

by stressing the qualitative resemblance of the modeled

and measured flows. In any case, the results to follow

indicate that a computational model of a disturbed wind

field need not be perfect in order to be useful in the

context of (inverse) dispersion.

b. Rescaling the computational flow

The Fluent computations by Bourdin and Wilson (2008)

treated the flow as unstratified, a good approximation

for the experimental runs considered in this paper (for

which the Obukhov length jLj$ 150 m), with the friction

velocity at the inflow boundary fixed at u
*
F 5 0.4 m s21

and the roughness length specified as z0
F 5 0.015 m, the

value reported by Wilson and Flesch (2003). The simu-

lation provides the fields of mean velocity ui, of the tur-

bulent kinetic energy E and its dissipation rate �, and of

FIG. 2. Transect of normalized mean cup wind speed S/S0 at

height z/h 5 ½, along the diagonal of the square sheltered plot,

during corner flow. Line is the Fluent simulation using the rke

closure (Bourdin and Wilson 2008), while s symbols are cup ane-

mometer observations (Wilson and Flesch 2003).
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the shear stresses u9w9, and so on. For clarity, we append

a superscript F to identify the ‘‘raw’’ computed values—

for example, uF
i (I, J, K) is the Fluent field of the mean

velocity—and we note the distinction between directional

indices, such as appear in the velocity vector uF
i [ (uF ,

yF , wF), and the (upper case) indices (I, J, K) that we

use to label the coordinates of the grid nodes.

Having decided to focus on modeled (SC/Q)*, that is,

a dimensionless ratio, there was no need to adjust the

Fluent fields in terms of the overall velocity scale. How-

ever, we did uniformly rescale the Fluent fields to re-

produce the aforementioned values (section 2b) of key

dimensionless variables observed by the reference sonic

anemometer at height z 5 zR 5 2.2 m in the upwind

flow. Let KR be the height index for nodes whose height

corresponds most closely to the height of the reference

sonic anemometer, and let I0, J0 be the indices associ-

ated with the horizontal coordinates of the southwest

corner of the grid. Then (I0, J0, KR) represents the far-

thest upwind node at the height of the sonic anemome-

ter, and is positioned in the undisturbed flow. Now let

Ê
F
[ EF(I0, J0, KR), �̂F [ �F(I0, J0, KR), ûF [ uF(I0, J0,

KR) represent Fluent’s solution for the numeric values at

node (I0, J0, KR) of respectively the TKE, the dissipation

rate, and the x component of mean velocity, and so on.

The desired rescaling was accomplished by basing the

3D-LS calculation on the adjusted fields

u(I, J, K) 5 uF(I, J, K)
k�1

y ln(z
R

/z
0
)

ûF /uF
*

, (15)

y 5 yF k�1
y ln(z

R
/z

0
)

ŷF /uF
*

, (16)

w 5 wF k�1
y ln(z

R
/z

0
)

ŵF /uF
*

, (17)

E 5 EF
(E/u2

*)exp

Ê
F

/(uF
*

)2
, (18)

�5 �F
(k

y
z

R
)�1(uF

*)3

�̂F
, (19)

u92 5
2c2

u

c2
u 1 c2

y 1 c2
w

E, and (20)

u9w9 5 (u9w9)F (21)

[other components of the stress tensor follow the indi-

cated pattern; and for brevity the spatial indices I, J, K

have been suppressed in Eqs. (16)–(21)]. The rescal-

ing factor for the mean velocities [i.e., fraction on the

right-hand sides of Eqs. (15)–(17)] was 1.05 (the ratio of

Fluent’s specification for the von Kármán constant and

our own specification ky 5 0.4), while the rescaling fac-

tors for turbulent kinetic energy and its dissipation rate

were respectively 2.27 and (again) 1.05. (Explanation:

the property E/u
*
2 is not universal across adiabatic wall

shear layers, and the Fluent simulation had set this as

3.33, whereas our neutral experiments suggested a mean

value of 7.41.) After the above adjustments, the field of

the kinematic shear stress tensor R 5 Rij 5 u9i u9j was

checked for violations of Schwartz inequality

(u9
A

u9
B

)2
# s2

As2
B (A 6¼ B); (22)

however, no such violations were found.

FIG. 3. Fluent’s computed profile at the plot center of normalized

standard deviation of vertical velocity vs observations (with range)

from sonic anemometers (h is the windbreak height). Values are

normalized on the reference value (of sw) at z 5 zR 5 2.2 m in the

upwind flow.

FIG. 4. Contours of normalized turbulent kinetic energy EF/(u
*
F)2,

as computed by Fluent (u
*
F being the friction velocity in the up-

stream region). The upstream value (as prescribed in the simula-

tions) was E/u2
*0

5 3.3. For the Lagrangian simulations we rescaled

the Fluent field EF so that the value at the reference sonic matched

the observed value, (E/u
*
2 )exp 5 7.4.
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In the upstream region these rescaled computational

wind statistics closely represent the experimental flow

(exactly so, at the reference height), while in the region

of the flow disturbance the results of Bourdin and Wilson

(2008), shown earlier, are indicative.

c. Overwriting a horizontally homogeneous flow
onto the grid

Because we are interested in the comparative per-

formance of LS simulations (and performance for in-

verse dispersion) with and without making allowance for

(or recognizing) flow disturbance, it was necessary for

the MO-LS simulations to overwrite the Fluent-derived

flow field. In this case, bearing in mind our focus on the

property SC/Q, which is invariant relative to the velocity

scale (which may be taken, equivalently, to be either S

or u
*
), we adopted the dimensionless properties of the

flow as described in section 2b and that summarize the

observations of the sonic anemometer. From those prop-

erties we wrote onto the grid a horizontally uniform flow:

u(I, J, K) 5
1ffiffiffi
2
p

uF
*

k
y

ln
z(K)

z
0

, (23)

y 5
1ffiffiffi
2
p

uF
*

k
y

ln
z(K)

z
0

, (24)

w 5 0, (25)

E 5
c2

u 1 c2
y 1 c2

w

2
(uF

*)2, (26)

�5
(uF

*)3

k
y
z(K)

, (27)

u92 5 c2
u(uF

*)2(etc.), (28)

u9w9 5 y9w9 5 � 1ffiffiffi
2
p (uF

*)2, and (29)

u9y9 5 0. (30)

Full spatial indices (I, J, K) have been shown only in the

first equation, and of course all these velocity statistics

(intended for MO-LS simulations) are invariant with

respect to the horizontal indices I, J; some vary (dis-

cretely) with height, through z(K).

5. Results

Recall that the objective is to estimate the strength Q

of the 6 m 3 6 m surface methane source, from each given

average concentration excess C. This entails performing

a trajectory simulation for each source–detector config-

uration (A, . . . , D) to extract a theoretical (symbolized *)

value for the normalized C/Q ratio—that is, for (SC/Q)*.

There are four experimental values of SC/Q, and from

each pair [SC/Q, (SC/Q)*] we have an implied value for

QLS/Q, which gives the accuracy with which source

strength has been diagnosed by inverse dispersion based

on a Lagrangian stochastic calculation of trajectories.

In the simulations to follow each cited value of (SC/Q)*

is the average over N 5 19 independent subensembles

of paths. Stated percentage errors of each simulation,

which have been rounded up to whole numbers, rep-

resent a normalized standard error; they are defined

se% [ 100s/
ffiffiffiffi
N
p

, where s is the standard deviation of

(SC/Q)1, . . . , (SC/Q)N—that is, over the N subensembles

of paths. The number NP of paths computed within each

subensemble was NP 5 32 000 for configurations (A, B)

and NP 5 64 000 for configurations (C, D).

a. Concentration field

The one-dimensional (Monin–Obukhov) and three-

dimensional (windbreak) flow fields differ radically, and

Fig. 5 indicates that, not surprisingly, so too do the cor-

responding concentration fields, as revealed in concen-

tration contours plotted at the height of the laser detector

light paths (z 5 1 m). The concentration field of Fig. 5

has been computed from forward trajectories, on the

basis of particle residence times in cells of area 0.25 3

0.25 m2 and depth 0.1 m. The irregularity of the con-

tours is stochastic, while the slightly imperfect reflection

symmetry (of the contours about the diagonal) visible in

Fig. 5 stems from the interpolation of wind statistics from

Fluent’s grid onto the grid used to compute trajectories.

The difference between the (SC/Q)* fields indicated

by Fig. 5 seems physically plausible, the more so in view

of Fluent’s decent estimation of the field of mean wind

speed (Fig. 2). In the MO velocity field (upper panel of

Fig. 5), the contours of SC/Q delineate a narrow plume,

elongated in the direction of the mean wind; whereas, in

the actual flow (or rather, Fluent’s approximation to it)

the plume is wider in the crosswind direction and less

elongated: the region of high concentrations is in closer

proximity to the source. Evidently, then, the laser line-

average concentrations must differ from flow to flow.

b. Comparative performance of 3D-bLS
and MO-bLS

Table 2 and Fig. 6 compare the performance of MO-

bLS versus 3D-bLS for the inference of the source

strength, where in both cases (SC/Q)* has been com-

puted from the touchdown method [Eq. (7)] applied to
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backward simulations. (Interested readers may consult

the appendix for corresponding results from forward

simulations; however, those simulations compromise the

experiment by having to represent the detectors with

finite cross section. The point of the appendix is strictly

to confirm the forward–backward symmetry of the tra-

jectory algorithm.)

For configuration A, where the laser stood within the

windbreak and just over the edge of the source, 3D-bLS

provides a definitive improvement relative to inference

by MO-bLS. In the other three configurations, however,

the situation is not so clear cut. Inference by 3D-bLS is

marginally better than by MO-bLS at location B, but

elsewhere (C, D) it is marginally worse. Overall it is not,

then, as clear as one might wish that adopting the more

rigorous (albeit imperfect) three-dimensional description

of the wind field has proven a better basis for inverse

dispersion than the assumption or imposition of a ficti-

tious, undisturbed and horizontally uniform flow.

Be that as it may, the most important point to be made

in regard to these results is the fact that, irrespectively of

whether one invokes 3D-bLS or the far simpler MO-bLS,

all of these inferred QbLS/Q ratios lie within a factor of

2 of unity: ½ # QbLS/Q # 2. This is indicative of the

robustness of inverse dispersion, even where distur-

bance to the flow is illegitimately (in principle) ignored

or imperfectly compensated for; and therein lies the

striking utility of the approach. It is also important to

recognize that, where applied to the most distant laser

(D), both methods have correctly estimated the source

strength, bearing in mind the prevailing uncertainties.

We do not interpret the QLS/Q 5 (1.2 6 0.20) from 3D-

bLS applied to configuration D (see Table 2) as being

significantly different from, or worse than, the QLS/Q 5

(0.87 6 0.15) obtained by MO-bLS applied in the same

configuration. Such an interpretation would be un-

warranted given the prevailing uncertainties, namely,

FIG. 5. Computed contours of (100 3) the normalized concen-

tration SC/Q in the x–y plane at height z 5 1 m, the height of op-

eration of the laser gas detectors. (top) MO-fLS; (bottom) 3D-fLS.

The small square outlines the Ellerslie methane source; the larger

square outlines the shelter fence. Other lines show three of the four

laser detector configurations (cf. Fig. 1), the fourth (D) lying outside

the given view (which truncates the lower end of laser B and the right

end of laser C).

TABLE 2. Ratios QbLS/Q for each configuration indicate the skill

with which the inverse dispersion approach has diagnosed source

strength from a single measured concentration. Also listed are

measured and simulated values of normalized, line-averaged tracer

concentration (the reference velocity scale S being the mean wind

speed at z 5 zR 5 2.2 m in the upwind flow). For cases denoted

‘‘3D,’’ wind statistics were treated as disturbed, and represented by

Fluent’s k–� flow calculation (3D-bLS); otherwise, wind statistics

were horizontally homogeneous and represented by Monin–Obukhov

profiles (MO-bLS). Numbers in parentheses are the standard errors,

expressed as a percentage: these quantify run-to-run variability in the

measured value (SC/Q)obs, and stochastic variability in the computed

value (SC/Q)*, respectively. In the final column these errors are

summed with the uncertainty (65%) in true source strength, to

characterize the overall percentage uncertainty in QbLS/Q.

(SC/Q)obs (SC/Q)* QbLS/Q

A MO 2.15 3 1022 (5%) 1.20 3 1022 (3%) 1.80 (13%)

B MO 2.54 3 1022 (2%) 1.35 3 1022 (3%) 1.88 (10%)

C MO 7.27 3 1023 (2%) 6.04 3 1023 (4%) 1.20 (11%)

D MO 1.94 3 1023 (8%) 2.22 3 1023 (4%) 0.87 (17%)

A 3D 2.15 3 1022 (5%) 2.41 3 1022 (2%) 0.89 (12%)

B 3D 2.54 3 1022 (2%) 1.53 3 1022 (2%) 1.67 (9%)

C 3D 7.27 3 1023 (2%) 4.93 3 1023 (4%) 1.47 (11%)

D 3D 1.94 3 1023 (8%) 1.62 3 1023 (4%) 1.20 (17%)
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uncertainty in the rotameter’s estimation of true emission

rate Q, standard error of experimental values of SC/Q

across all runs in a given configuration and the statistical

indeterminacy inherent in the outcome of the simulations.

c. Interpretation

Referring again to Fig. 5 and configuration A (laser

within the windbreak, near the edge of the source), it is

clear from the (SC/Q)* contours that this laser would

have detected a much greater line-average concentra-

tion in the disturbed (i.e., actual) flow, than had the up-

wind flow prevailed (undisturbed) over the entire area.

Confirming this, from Table 2 we note that laser A in

undisturbed flow would see SC/Q ’ 0.012 while in the

actual flow (or rather, Fluent’s approximation to it) laser

A would see a twofold higher level SC/Q ’ 0.024. The

latter is much closer to the measured figure, namely,

SC/Q ’ 0.021, and so it is clear why, with the laser in

configuration A, the source strength is much better es-

timated by 3D-LS than by MO-LS. The situation is not

so clear cut for the other configurations, but probably in

the case of configuration B it might be expected (on the

basis of Fig. 5) that a laser in the undisturbed (MO) flow

would detect a lower SC/Q (see Table 2) than occurred

in the actual (disturbed) flow, so that MO-bLS based on

configuration B would (again) overestimate the source

strength.

6. Conclusions

We have given a rather exhaustive description of the

tracer experiment and our subsequent analysis, in case

others should wish to improve upon it. It would be of

interest to know whether eventual refinement in the tech-

nique of micrometeorological wind simulation might pro-

vide an improved representation of this disturbed flow,

and (in consequence) a demonstrably improved perfor-

mance of 3D-bLS for all configurations of the detector.

On the other hand one might well ask, given the infinite

variety of (possible) disturbances to the wind, what gen-

erality could attach to a study of inverse dispersion in this

particular case? In that regard, we can only emphasize that

this is, anyway, a strongly disturbed flow, entailing strong

streamwise pressure gradients (up to several pascals over

a distance of a few meters; Wilson 1997) and associated

strong streamline curvature, and that it is very much a

three-dimensional flow. Taken in combination with the

study of Wilson et al. (2009), it would appear (from the

definitive superiority of 3D-bLS for configuration A)

that evidence for the advantage of 3D-LS in computing the

C–Q relationship is accumulating (there would be little

point in the enterprise of developing micrometeorological

wind models, were that not the case). As foreshadowed

earlier, the present results indicate that a computed flow

field need not be perfect in order to be useful.

However, if one decides to perform inverse dispersion

based on a representation of the flow as being disturbed

(RANS wind model / 3D-LS),4 then complications en-

sue that to some extent compromise any hope for a greater

objectivity than attaches to the simpler approach we

have labeled MO-LS—that is, the approach of treating

the flow as undisturbed, and positioning detectors so as

to minimize the influence of that disturbance. Comput-

ing a disturbed wind field is onerous, demands special-

ized expertise, and entails arbitrary choices: of turbulence

closure; of closure parameters; of micrometeorological

parameters (such as cu 5 su/u
*
); of spatial resolution

(Dx, Dy, Dz); and more. Particularly if the flow is strati-

fied (as in general it must be), the coupling of the velocity

statistics to temperature and even humidity statistics

proliferates the number of quantities needing to be

specified as boundary conditions in order to respect the

surface energy balance. And as if those complications

were insufficient, one needs also to implement a much

more complex model of trajectories.

FIG. 6. Performance of inverse dispersion by bLS for the Ellerslie

square plot tracer trials, in neutrally stratified corner flow. Open

symbols, MO-bLS; filled symbols, 3D-bLS. Uncertainty bars are 6

the sum of uncertainty in true Q, run-to-run variation in (SC/Q)exp,

and stochastic error in modeled (SC/Q)*. [Notes: Recall that the

wind direction is oriented along the diagonal of the plot. For con-

figuration A, the laser detector, standing inside the sheltered plot, is

upwind from the origin of the distance axis used on this diagram

(only)—that origin being the NE, i.e., downwind, corner of the plot.

Detector B stood just outside the shelter. As regards a scale for dis-

tance, the distance from plot center to (any) corner is
ffiffiffiffiffiffiffi
200
p

5 14.1 m.]

4 One could also have performed inverse dispersion using an

Eulerian treatment, which would offer the efficiency of being able

to be handled simultaneously with the wind calculation. However,

the tracer calculation necessarily is specific to each source configu-

ration, and the latter may sometimes need to be treated as unknown.
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The MO-bLS approach to inverse dispersion is sim-

ple, flexible, and rapid—able to provide a first estimate

of source strength for any given interval within hours

(easily) and (if need be) in a matter of minutes, after the

required measurements are made. On the evidence of

this paper the more complex approach of 3D-bLS does

potentially afford a systematic improvement in accuracy

if the detector must be placed in a region of very dis-

turbed winds. Nevertheless, we recommend that the bLS

approach to inverse dispersion should normally be based

on the approximation of an undisturbed flow, with de-

tectors appropriately placed so as to reduce the sensi-

tivity of the C/Q ratio to whatever flow disturbance does

actually arise. We have yet to encounter an example of

MO-bLS, applied in this spirit and with appropriate cri-

teria regarding data quality (proper accounting of exper-

imental uncertainties) and atmospheric state (definitively

measured, and not too extreme), yielding an estimate of

source strength (deduced from crosswind line-averaged

concentration) that is wrong, in the mean over numer-

ous trials, by worse than about 620%.
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APPENDIX

Forward–Backward Consistency of the LS
Simulations

Except from the influence of discretization error and

the intervention of a reflection algorithm at boundaries,

forward and backward Lagrangian stochastic models

ought to provide identical estimates of the ratio ‘‘C/Q,’’

that is, the mean concentration averaged over the volume

of the detector D caused by unit release per unit time

within the volume of the distributed source S. It is im-

portant that we here correct a mistaken suggestion of

Wilson et al. (2009, footnote, p. 1595) that forward and

backward LS models may provide severely inconsistent

estimates of C/Q in this highly disturbed shelter flow.

The preliminary simulations of the square plot flow

briefly alluded to in that paper are invalid, having been

contaminated by an unsuspected error in the computa-

tion of Reynolds stress gradients in the flow field (missing

brackets).

That coding error corrected, the present simulations

based on disturbed flow satisfactorily uphold forward–

backward symmetry. To test the question, it was impor-

tant to treat sources and detectors consistently across

both treatments—and because forward detectors (i.e.,

the laser paths) must be attributed to a finite volume, it is

required that in backward simulations they be treated as

finite volume sources. Forward simulations were per-

formed for configurations A, B, D (for which laser de-

tectors were parallel to one or another of the sides of the

plot). Particles were assigned a random starting position

within the horizontal confines of the (physical) source

(i.e., uniform release on 23 # x, y # 3 m) and initial

height z 5 z0 (forward source a parallelepiped with zero

depth). Each laser detector was represented (whether as

a forward detector or a backward source) as being a

rectangular parallelepiped, aligned with the x or the y

axis as need be, and defined by its centerpoint and its

halfspans about that point on each axis. The longitudinal

half-span was half the laser pathlength, while transverse

halfspans were set to 0.2 m (note: the larger the detector

volume is, the smaller is the statistical uncertainty; the

0.2 m halfspan was a compromise).

Table A1 demonstrates an excellent consistency of

forward and backward simulations, and (secondarily, cf.

Table 2) that assigning the laser paths a finite cross sec-

tion as large as 60.2 m results in an alteration of the

QbLS/Q ratio when the detector is very near the source.

Although the forward–backward consistency is only what

is expected in principle, some discussion is warranted.

At the outset, all sources and all detectors had been

consistently and identically treated as having a finite

volume, characterized by three finite halfspans about a

centerpoint—and (crucially) the physical source too had

been represented by a slab of depth 0.3 m centered on

z 5 0.2 m, that same volume also serving as a residence

time detector for backward simulations. However, in

TABLE A1. Comparing forward (f) and backward (b) simula-

tions, the lasers being treated as (equal) finite volume detectors

(forward) and sources (backward). For cases denoted ‘‘3D’’ wind

statistics were treated as disturbed, and represented by Fluent’s k–�

flow calculation; otherwise, wind statistics were horizontally homo-

geneous and represented by Monin–Obukhov profiles. Numbers in

parentheses are the standard error, expressed as a percentage.

(SC/Q)obs (SC/Q)* QLS/Q

A MO f 2.15 3 1022 (5%) 1.28 3 1022 (1%) 1.68

A MO b 1.35 3 1022 (5%) 1.60

B MO f 2.54 3 1022 (2%) 1.42 3 1022 (1%) 1.79

B MO b 1.44 3 1022 (6%) 1.76

D MO f 1.94 3 1023 (8%) 2.16 3 1023 (1%) 0.90

D MO b 2.17 3 1023 (10%) 0.90

A 3D f 2.15 3 1022 (5%) 2.70 3 1022 (1%) 0.80

A 3D b 2.57 3 1022 (2%) 0.84

B 3D f 2.54 3 1022 (2%) 1.52 3 1022 (1%) 1.67

B 3D b 1.53 3 1022 (2%) 1.66

D 3D f 1.94 3 1023 (8%) 1.87 3 1023 (1%) 1.04

D 3D b 1.95 3 1023 (8%) 1.00
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that configuration, no matter how small the time step

was, forward and backward simulations simply were not

consistent. The forward–backward consistency reported

by Table A1 was procured only after the realization that

a rigorously systematic treatment of the forward source

and the backward detector is needed. Thus, as stated

earlier, all simulations for which results are shown in this

paper treated the physical source as a plane on ground,

and (in the backward treatment) estimated the con-

centration over the physical source by the touchdown

method [Eq. (7)]. In summary, fLS and bLS provided

consistent C/Q, provided that the time step was suffi-

ciently small and that prescription of sources and de-

tectors was consistent across both treatments.
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